图①是一块边长为1,周长记为的正三角形(三边相等的三角形)纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的)后,得图③,④,…,记第n(n3)块纸板的周长为,则的值为( )
A. | B. | C. | D. |
电子跳蚤游戏盘是如图所示的△ABC,AB=6,AC=7,BC=8.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;…;跳蚤按上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2007与P2010之间的距离为( )
A.1 | B.2 | C.3 | D.4 |
观察下列图形的排列规律(其中、■、★分别表示三角形、正方形、五角星).若第一个图形是三角形,则第18个图形是 .(填图形的名称)
■★■★■★■★…
“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.
例如:图1有6个点,图2有12个点,图3有18个点, ,按此规律,求图10、图 有多少个点?
我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是 个;图2中黑点个数是 个:图3中黑点个数是 个; ;所以容易求出图10、图 中黑点的个数分别是 、 .
请你参考以上“分块计数法”,先将下面的点阵进行分块,再完成以下问题:
(1)第5个点阵中有 个圆圈;第 个点阵中有 个圆圈.
(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
如图,在 中, , ,若进行以下操作,在边 上从左到右依次取点 、 、 、 、 ;过点 作 、 的平行线分别交 、 于点 、 ;过点 作 、 的平行线分别交 、 于点 、 ;过点 作 、 的平行线分别交 、 于点 、 ,则 .
图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,
以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以
算出图1中所有圆圈的个数为1+2+3+…+n=.
如果图中的圆圈共有13层,请解决下列问题:
(1)我们自上往下,在每个圆圈中按图3的方式填上一串连续的正整数1,2,3,4,……,则最底层最左
边这个圆圈中的数是 ;
(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数-23,-22,-21,-20,……,求
最底层最右边圆圈内的数是_______;
(3)求图4中所有圆圈中各数的绝对值之和.
一质点P从距原点1个单位的M点处向原点方向跳动,第一次跳动到OM的中点M1处,第二次从M1跳到OM1的中点M2处,第三次从点M2跳到OM2的中点M3处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为( )
A. | B. | C. | D. |
下面图形都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第
个图形共有210个小球.
如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为 .
下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为( )
A. |
|
B. |
|
C. |
|
D. |
|
下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒, ,按此规律,图案⑦需 根火柴棒.
将一些相同的“〇”按如图所示摆放,观察每个图形中的“〇”的个数,若第 个图形中“〇”的个数是78,则 的值是
A.11B.12C.13D.14