电子跳蚤游戏盘是如图所示的△ABC,AB=6,AC=7,BC=8.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;…;跳蚤按上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2007与P2010之间的距离为( )
A.1 | B.2 | C.3 | D.4 |
如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有16个三角形,则需要( )根火柴棍.
A.30根 | B.31根 | C.32根 | D.33根 |
用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子 枚.(用含n的代数式表示)
一质点P从距原点1个单位的M点处向原点方向跳动,第一次跳动到OM的中点M1处,第二次从M1跳到OM1的中点M2处,第三次从点M2跳到OM2的中点M3处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为( )
A. | B. | C. | D. |
图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,
以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以
算出图1中所有圆圈的个数为1+2+3+…+n=.
如果图中的圆圈共有13层,请解决下列问题:
(1)我们自上往下,在每个圆圈中按图3的方式填上一串连续的正整数1,2,3,4,……,则最底层最左
边这个圆圈中的数是 ;
(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数-23,-22,-21,-20,……,求
最底层最右边圆圈内的数是_______;
(3)求图4中所有圆圈中各数的绝对值之和.
观察图形,它们是按一定规律排列的,依照此规律,第7个图形中★的个数是 个.
如图, 一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形.
(1)一个3×2的矩形用不同的方式分割后, 小正方形的个数可以是 ;
一个5×2的矩形用不同的方式分割后, 小正方形的个数可以是 ;
(2)一个n×2的矩形用不同的方式分割后,小正方形的个数最少是____________________.(直接填写结果).
如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.5m.
(1)按图示规律,第一图案的长度L1=m;第二个图案的长度L2= m;
(2)用代数式表示带有花纹的地面砖块数n与走廊的长度Ln(m)之间的关系 ;
由点组成的正方形,每条边上的点数n与总点数之间的关系如图所示,则当n=60时,计算 s的值为( )
A.220 | B.236 | C.240 | D.216 |
观察如图的图形,它们是按一定规律排列的,依照此规律,第( )个图形共由120个五角星组成.
A.13 | B.14 | C.15 | D.16 |
如图是一组有规律的图案,第1个图案由4个组成,第2个图案由7个组成,第3个图案由10个组成,第4个图案由13个组成,…,则第n(n为正整数)个图案由 个组成.
两条有公共端点的射线组成了一个角;三条具有公共端点而又不重合的射线组成三个角;四条这样的射线组成了6个角,那么n条这样的射线组成了 个角.
一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是( ).
A.4n+1 | B.4n+2 | C.4n+3 | D.4n+5 |