一个电子跳蚤在数轴上做跳跃运动.第一次从原点 起跳,落点为 ,点 表示的数为1;第二次从点 起跳,落点为 的中点 ,第三次从 点起跳,落点为 的中点 ;如此跳跃下去 最后落点为 的中点 ,则点 表示的数为 .
如图, ,正方形 ,正方形 ,正方形 ,正方形 , ,的顶点 , , , , ,在射线 上,顶点 , , , , , ,在射线 上,连接 交 于点 ,连接 交 于点 ,连接 交 于点 , ,连接 交 于点 ,连接 交 于点 , ,按照这个规律进行下去,设 与△ 的面积之和为 ,△ 与△ 的面积之和为 ,△ 与△ 的面积之和为 , ,若 ,则 等于 .(用含有正整数 的式子表示)
如图, ,点 在射线 上,且 ,过点 作 交射线 于点 ,在射线 上截取 ,使得 ;过点 作 交射线 于点 ,在射线 上截取 ,使得 ; ;按照此规律进行下去,则 长为 .
如图,四边形 是矩形,延长 到点 ,使 ,连接 ,点 是 的中点,连接 , ,得到△ ;点 是 的中点,连接 , ,得到△ ;点 是 的中点,连接 , ,得到△ ; ;按照此规律继续进行下去,若矩形 的面积等于2,则△ 的面积为 .(用含正整数 的式子表示)
观察下列结论:
(1)如图①,在正三角形中,点,是,上的点,且,则,;
(2)如图2,在正方形中,点,是,上的点,且,则,;
(3)如图③,在正五边形中点,是,上的点,且,则,;
根据以上规律,在正边形中,对相邻的三边实施同样的操作过程,即点,是,上的点,且,与相交于.也会有类似的结论,你的结论是 .
如图,△,△,△,,△,都是一边在轴上的等边三角形,点,,,,都在反比例函数的图象上,点,,,,,都在轴上,则的坐标为 .
如图,将一枚跳棋放在七边形 的顶点 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第 次移动 个顶点(如第一次移动1个顶点,跳棋停留在 处,第二次移动2个顶点,跳棋停留在 处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是
A. |
、 |
B. |
、 |
C. |
、 、 |
D. |
、 、 |
下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的" "形纸片,图(2)是一张由6个小正方形组成的 方格纸片.
把" "形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的 方格纸片,将" "形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有 种不同放置方法,则 的值是
A. |
160 |
B. |
128 |
C. |
80 |
D. |
48 |
如图各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,,按此规律,第10个图中黑点的个数是 .
如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆按此规律排列下去,第9个图形中圆的个数是 个.
如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为 .
如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,,按此规律排列下去,第⑦个图形中菱形的个数为 .
如图,在平面直角坐标系中,将边长为1的正方形 绕点 顺时针旋转 后得到正方形 ,依此方式,绕点 连续旋转2019次得到正方形 ,那么点 的坐标是
A. |
, |
B. |
|
C. |
, |
D. |
|
如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为 的 多次复制并首尾连接而成.现有一点 从 为坐标原点)出发,以每秒 米的速度沿曲线向右运动,则在第2019秒时点 的纵坐标为
A. |
|
B. |
|
C. |
0 |
D. |
1 |