某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为 ,则该文具店五月份销售铅笔的支数是
A. B. C. D.
某企业今年3月份产值为 a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )
A. |
(a﹣10%)(a+15%)万元 |
B. |
a(1﹣90%)(1+85%)万元 |
C. |
a(1﹣10%)(1+15%)万元 |
D. |
a(1﹣10%+15%)万元 |
长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买 张成人票和 张儿童票,则共需花费 元.
某数学老师在课外活动中做了一个有趣的游戏:首先发给、、三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:
第一步,同学拿出二张扑克牌给同学;
第二步,同学拿出三张扑克牌给同学;
第三步,同学手中此时有多少张扑克牌,同学就拿出多少张扑克牌给同学.
请你确定,最终同学手中剩余的扑克牌的张数为 .
一列数1,5,11, 按此规律排列,第7个数是
A. |
37 |
B. |
41 |
C. |
55 |
D. |
71 |
观察等式: ; ; ; 已知按一定规律排列的一组数: , , , , , ,若 ,用含 的式子表示这组数据的和是
A. |
|
B. |
|
C. |
|
D. |
|
若一个两位数十位、个位上的数字分别为,,我们可将这个两位数记为,易知;同理,一个三位数、四位数等均可以用此记法,如.
【基础训练】
(1)解方程填空:
①若,则 ;
②若,则 ;
③若,则 ;
【能力提升】
(2)交换任意一个两位数的个位数字与十位数字,可得到一个新数,则一定能被 整除,一定能被 整除,一定能被 整除;(请从大于5的整数中选择合适的数填空)
【探索发现】
(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用,再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.
①该“卡普雷卡尔黑洞数”为 ;
②设任选的三位数为(不妨设,试说明其均可产生该黑洞数.
阅读下面的材料:
按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为,排在第二位的数称为第二项,记为,依此类推,排在第位的数称为第项,记为.所以,数列的一般形式可以写成:,,,,,.
一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用表示.如:数列1,3,5,7,为等差数列,其中,,公差为.
根据以上材料,解答下列问题:
(1)等差数列5,10,15,的公差为 ,第5项是 .
(2)如果一个数列,,,,,是等差数列,且公差为,那么根据定义可得到:,,,,,.
所以
,
,
由此,请你填空完成等差数列的通项公式: .
(3)是不是等差数列,,的项?如果是,是第几项?
某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比 a: b: c: d: e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为( )
A. |
甲 |
B. |
乙 |
C. |
丙 |
D. |
丁 |
点 , , , 在数轴上的位置如图所示, 为原点, , .若点 所表示的数为 ,则点 所表示的数为
A. |
|
B. |
|
C. |
|
D. |
|
数轴上,两点的距离为4,一动点从点出发,按以下规律跳动:第1次跳动到的中点处,第2次从点跳动到的中点处,第3次从点跳动到的中点处,按照这样的规律继续跳动到点,,,,.,是整数)处,那么线段的长度为 .