初中数学

如图,某校数学兴趣小组为测得大厦AB的高度,在大厦前的平地上选择一点C,测得大厦顶端A的仰角为30°,再向大厦方向前进80米,到达点D处(C、D、B三点在同一直线上),又测得大厦顶端A的仰角为45°,请你计算该大厦的高度.(精确到0.1米,参考数据:≈1.414,≈1.732)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,点M为边AB上的一动点,点N为边AC上的一动点,且∠MDN=90°,则cos∠DMN为(   ).

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

2015年4月25日14时11分尼泊尔发生了8.1级大地震.山坡上有一棵与水平面垂直的大树,大地震过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4米.

(1)求∠DAC的度数;
(2)求这棵大树原来的高度是多少米?(结果精确到个位,参考数据:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF,设OD=t.

(1)求tan∠FOB的值;
(2)用含t的代数式表示△OAB的面积S;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,小红站在水平面上的点A处,测得旗杆BC顶点C的仰角为60°,点A到旗杆的水平距离为a米.若小红的水平视线与地面的距离为b米,则旗杆BC的长为________米。(用含有a、b的式子表示)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

函数y=中自变量的取值范围是(  )

A.x>1 B.x ≥1 C.x≤1 D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,甲楼AB的高度为35m,经测得,甲楼的底端B处与乙楼的底端D处相距105m,从甲楼顶部A处看乙楼顶部C处的仰角∠CAE的度数为25°.求乙楼CD的高度(结果精确到0.1m).[参考数据:sin25°=0.42,cos25°=0.91,tan25°=0.47].

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

函数中自变量x的取值范围是(      )

A.≥1 B.≥1且x≠±2 C.x≠±2 D.≥1且
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为

A.20米 B.10 C.15 D.5
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,港口A在观测站O的正东方向,OA="4" km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为

A.4km B.km C.km D.(km
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,“和谐号”高铁列车的小桌板收起时,小桌板的支架底端与桌面顶端的距离OA=75厘米,且可以近似看作与地面垂直.展开小桌板使桌面保持水平,此时CB⊥AO,∠AOB=∠ACB=37°,且支架长OB与桌面宽BC的长度之和等于OA的长度.求小桌板桌面的宽度BC.(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

阅读下面材料:
小红遇到这样一个问题:如图1,在四边形中,,求的长.

小红发现,延长相交于点,通过构造Rt△,经过推理和计算能够使问题得到解决(如图2).
(1)请回答:的长为        
(2)参考小红思考问题的方法,解决问题:
如图3,在四边形中,,求的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在一个直角三角形中,有一个锐角等于60°,则另一个锐角的正弦值是

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题10分)如图,一楼房AB后有一假山,其斜坡CD坡比为1:,山坡坡面上点 E处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得点E的俯角为45°.

(1)求点E距水平面BC的高度;
(2)求楼房AB的高。(结果精确到0.1米,参考数据≈1.414,≈1.732).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,体育场内一看台与地面所成夹角为 30 ° ,看台最低点A到最高点B的距离为 10 3 A B 两点正前方有垂直于地面的旗杆 D E .在 A B 两点处用仪器测量旗杆顶端 E 的仰角分别为 60 ° 15 ° (仰角即视线与水平线的夹角)

(1)求 A E 的长;
(2)已知旗杆上有一面旗在离地1米的F点处,这面旗以0.5米/秒的速度匀速上升,求这面旗到达旗杆顶端需要多少秒?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学计算器—基础知识试题