甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( )
A.②③ | B.①②③ | C.①② | D.①③ |
已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.
(1)如图1,若点O在边BC上,求证:AB=AC;
(2)如图2,若点O在△ABC的内部,求证:AB=AC;
(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.
在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= .
如图,则图中的阴影部分的面积是( )
A.12πa2 | B.8πa2 | C.6πa2 | D.4πa2 |
如图,一次函数y=x﹣5分别交x轴、y轴于A、B两点,二次函数y=﹣x2+bx+c的图象经过A、B两点.
(1)求二次函数的解析式;
(2)设D、E是线段AB上异于A、B的两个动点(E点位于D点上方),DE=.
①若点D的横坐标为t,用含t的代数式表示D、E的坐标;
②抛物线上是否存在点F,使点F与点D关于x轴对称,如果存在,请求出△AEF的面积;如果不存在,请说明理由.
如图:已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与A、C不重合),Q在BC上.
(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长;
(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长;
(3)试问:在AB上是否存在一点M,使得△PQM为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ的长.
如图,把△ABC绕点B逆时针旋转26°得到△EBF,若EF正好经过A点,则∠BAC= .
如图,直线AB:y=﹣x﹣b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.
(1)求点B的坐标;
(2)求直线BC的解析式;
(3)直线EF:y=2x﹣k(k≠0)交AB于E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,请说明理由.
如图,C为线段AB上一动点(不与点A、B重合),在AB同侧分别作正三角形ACD和正三角形BCE,AE与BD交于点F,AE与CD交于点G,BD与CE交于点H,连接GH.以下五个结论:①AE=BD;②GH∥AB;③AD=DH;④GE=HB;⑤∠AFD=60°,一定成立的有 .(填序号即可)
如图(1)四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,点E在CD的延长线上,∠BAC=∠DAE.
(1)求证:△ABC≌△ADE;
(2)求证:CA平分∠BCD;
(3)如图(2),设AF是△ABC的BC边上的高,求证:EC=2AF.
如图,在△ABC中,AB=AC=2,BD=CE,F是AC边上的中点,则AD﹣EF 1.(填“>”、“=”或“<”)
如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点,若AB=5cm,BC=3cm,则△PBC的周长等于( )
A.4cm | B.6cm | C.8cm | D.10cm |
在我市创建国家级卫生城市中,某社区有一工程需如期完成,在工程招标时,接到甲、乙工程队的投标书,每施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元.根据甲、乙两队的投标书测算:(1)甲队单独完成这项工程刚好如期完成;
(2)乙队单独完成这项工程要比规定日期多用5天;
(3)若甲、乙两队合做4天,余下的工程有乙队做也正好如期完成.在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?
如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:cm),在上盖中开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为 cm.
(精确到个位,参考数据:≈1.4,≈1.7,≈2.2).
如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是( )
A. | B. |
C. | D. |