高中物理


如图所示,半径R=0.9 m的四分之一圆弧形光滑轨道竖直放置,圆弧最低点B与长为l=l m的水平面相切于B点,BC离地面高h=0.45 m,C点与一倾角为θ=30º的光滑斜面连接。质量m=1.0 kg的小滑块从圆弧顶点D由静止释放,已知滑块与水平面间的动摩擦因数μ=0.1,取g=10 m/s2。求:
(1)小滑块刚到达圆弧的B点时对圆弧的压力;
(2)小滑块从C点运动到地面所需的时间。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,在质量为M=0.99kg的小车上,固定着一个质量为m=10g、电阻R=1W的矩形单匝线圈MNPQ,其中MN边水平,NP边竖直,高度l=0.05m。小车载着线圈在光滑水平面上一起以v0=10m/s的速度做匀速运动,随后进入一水平有界匀强磁场(磁场宽度大于小车长度),完全穿出磁场时小车速度v1=2m/s。磁场方向与线圈平面垂直并指向纸内、磁感应强度大小B=1.0T。已知线圈与小车之间绝缘,小车长度与线圈MN边长度相同。求:
(1)小车刚进入磁场时线圈中感应电流I的大小和方向;
(2)小车通过磁场的过程中线圈电阻的发热量Q
(3)小车进入磁场过程中线圈克服安培力所做的功W

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

两个带电量均为+q小球,质量均为m,固定在轻质绝缘直角框架OAB(框架的直角边长均为L)的两个端点AB上,另一端点用光滑铰链固定在O点,整个装置可以绕垂直于纸面的水平轴在竖直平面内自由转动。
(1)若施加竖直向上的匀强电场E1,使框架OA边水平、OB边竖直并保持静止状态,则电场强度E1多大?
(2)若改变匀强电场的大小和方向(电场仍与框架面平行),为使框架的OA边水平、OB边竖直(BO的正下方),则所需施加的匀强电场的场强E2至少多大?方向如何?
(3)若框架处在匀强电场E1OA边水平、OB边竖直并保持静止状态时,对小球B施加一水平向右的恒力F,则小球B在何处时速度最大?最大值是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(1)下列说法正确的是(

A.

当一定量气体吸热时,其内能可能减小

B.

玻璃、石墨和金刚石都是晶体,木炭是非晶体

C.

单晶体有固定的熔点,多晶体和非晶体没有固定的熔点

D.

当液体与大气相接触时,液体表面层内的分子所受其它分子作用力的合力总是指向液体内部

E.

气体分子单位时间内与单位面积器壁碰撞的次数,与单位体积内气体的分子数和气体温度有关

(2)如右图,体积为、内壁光滑的圆柱形导气缸顶部有一质量和厚度均可忽略的活塞;气缸内密封有温度为、压强的理想气体,分别为大气的压强和温度。已知:气体内能与温度的关系为为正的常量;容器内气体的所有变化过程都是缓慢的。求:
(i)气缸内气体与大气达到平衡时的体积

(ii)在活塞下降过程中,气缸内气体放出的热量

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

[物理——选修3-5]
(1)下列说法正确的是_____(填入选项前的字母,有填错的不得分)

A.经过6次α衰变和4次β衰变后,成为稳定的原子核
B.发现中子的核反应方程为
C.γ射线一般伴随着αβ射线产生,在这三种射线中γ射线的穿透能力最强,电离能力也最强
D.氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减小,电势能增大,原子能量减小

(2)如图所示,一质量为M,长为l的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A(可视为质点),mM。现以地面为参考系,给AB以大小相等,方向相反的初速度,使A开始向左运动,B开始向右运动,但最后A刚好没有滑离B板。
(i)若已知AB的初速度大小为v0,求它们最后的速度大小和方向;
(ii)若初速度的大小未知,求小木块向左运动到达的最远处(从地面上看)离出发点的距离。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,defg是两根足够长且固定在竖直方向上的光滑金属导轨,导轨间距离为L,电阻忽略不计。在导轨的上端接电动势为E,内阻为r的电源。一质量为m、电阻为R的导体棒ab水平放置于导轨下端eg处,并与导轨始终接触良好。导体棒与金属导轨、电源、开关构成闭合回路,整个装置所处平面与水平匀强磁场垂直,磁场的磁感应强度为B,方向垂直于纸面向外。已知接通开关S后,导体棒ab由静止开始向上加速运动,求:
(1)导体棒ab刚开始向上运动时的加速度以及导体棒ab所能达到的最大速度;
(2)导体棒ab达到最大速度后电源的输出功率;
(3)分析导体棒ab达到最大速度后的一段时间△t内,整个回路中能量是怎样转化的?并证明能量守恒

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图甲所示,两平行金属板间接有如图乙所示的随时间t变化的交流电压u,金属板间电场可看做均匀、且两板外无电场,板长L=0.2m,板间距离d=0.1m,在金属板右侧有一边界为MN的区域足够大的匀强磁场,MN与两板中线OO′ 垂直,磁感应强度B=5×103T,方向垂直纸面向里。现有带正电的粒子流沿两板中线OO′连续射入电场中,已知每个粒子的速度v0=105m/s,比荷=108C/kg,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视为恒定不变。求:
(1)带电粒子刚好从极板边缘射出时两金属板间的电压;
(2)带电粒子进入磁场时粒子最大速度的大小;
(3)证明:任意时刻从电场射出的带电粒子,进入磁场时在MN上的入射点和出磁场时在MN上的出射点间的距离为定值,并计算两点间的距离。

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,一质量为0.99kg的木块静止在水平轨道ABB端,水平轨道与半径为10m的光滑弧形轨道BC相切。现有一质量为10g的子弹以500m/s的水平速度从左边射入木块且未穿出。已知木块与水平轨道的动摩擦因数μ=0.5,g=10m/s2。求:
(1)子弹射入木块与木块获得的共同速率;
(2)子弹射入后与木块在圆弧轨道上升的最大高度;
(3)从木块返回B点到静止在水平面上,摩擦阻力的冲量的大小。
                         

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一质量为m、带电量为+q粒子以速度v0O点沿y轴正方向射入一圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向的夹角为30°,同时进入场强大小为大小为E,方向沿x轴负方向成60°角斜向下的匀强电场中,通过了b点正下方c点,如图所示,已知 bO的距离为L,粒子的重力不计,试求:

(1)磁感应强度B
(2)圆形匀强磁场区域的最小面积;
(3)c点到b点的距离

来源:带点粒子在磁场中运动
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,一个质量为m、带电量为q的正离子,在D处沿着图中所示的方向进入磁感应强度为B的匀强磁场,此磁场方向垂直纸面向里,结果离子正好从离开A点距离为d的小孔C沿垂直于AC的方向进入匀强电场,此电场方向与AC平行且向上,最后离子打在B处,而BA点距离为2dABAC),不计粒子重力,离子运动轨迹始终在纸面内。求:
(1)离子从DB所需的时间;
(2)离子到达B处时的动能。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(18分)如图甲所示(俯视图),相距为2L的光滑平行金属导轨水平放置,导轨一部分处在以OO/为右边界匀强磁场中,匀强磁场的磁感应强度大小为B,方向垂直导轨平面向下,导轨右侧接有定值电阻R,导轨电阻忽略不计。在距边界OO/也为L处垂直导轨放置一质量为m、电阻不计的金属杆ab。求解以下问题:
(1)若ab杆固定在轨道上的初始位置,磁场的磁感应强度在时间t内由B均匀减小到零,求此过程中电阻R上产生的焦耳热为Q1
(2)若磁场的磁感应强度不变,ab杆在恒力作用下由静止开始向右运动3L距离,其v--x的关系图像如图乙所示。求①ab杆在刚要离开磁场时的加速度大小;②此过程中电阻R上产生的焦耳热Q2

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图一所示,abcd是位于竖直平面内的边长为10cm的正方形闭合金属线框,线框的质量为m=0.02Kg,电阻为R=0.1Ω. 在线框的下方有一匀强磁场区域,MN是匀强磁场区域的水平边界,并与线框的bc边平行,磁场方向与线框平面垂直. 现让线框由距MN的某一高度从静止开始下落,经0.2s开始进入磁场,图二是线框由静止开始下落的速度一时间图象。空气阻力不计, g取10m/s2求:
(1)金属框刚进入磁场时的速度;
(2)磁场的磁感应强度;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,两足够长平行光滑的金属导轨MNPQ相距为L,导轨平面与水平面夹角α=30°,导轨电阻不计.磁感应强度为B的匀强磁场垂直导轨平面向上,长为L的金属棒ab垂直于MNPQ放置在导轨上,且始终与导轨电接触良好,金属棒的质量为m、电阻为R.两金属导轨的上端连接右端电路,灯泡的电阻RL=4R,定值电阻R1=2R,电阻箱电阻调到使R2=12R,重力加速度为g,现将金属棒由静止释放,试求:
(1)金属棒下滑的最大速度为多大?
(2)当金属棒下滑距离为S0时速度恰达到最大,求金属棒由静止开始下滑2S0的过程中,整个电路产生的电热;
(3)R2为何值时,其消耗的功率最大?消耗的最大功率为多少?

 

来源:电磁感应综合
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图12-4-19所示,MNPQ为间距L=0.5m足够长的平行导轨,NQMN。导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=5Ω的电阻。有一匀强磁场垂直于导轨平面,磁感强度为B0=1T。将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好,导轨与金属棒的电阻均不计。现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ平行。已知金属棒与导轨间的动摩擦因数μ=0.5,当金属棒滑行至cd处时已经达到稳定速度,cd距离NQs=1m。试解答以下问题:(g=10m/s2,sin37°=0.6,cos37°=0.8)

(1)请定性说明金属棒在达到稳定速度前的加速度和速度各如何变化?(2)当金属棒滑行至cd处时回路中的电流多大?
(3)金属棒达到的稳定速度是多大?(4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感强度逐渐减小,可使金属棒中不产生感应电流,则磁感强度B应怎样随时间t变化(写出Bt的关系式)?

来源:电磁感应
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(1)测年法是利用衰变规律对古生物进行年代测定的方法。若以横坐标t表示时间,纵坐标m表示任意时刻的质量,的质量。下面四幅图中能正确反映衰变规律的是。(填选项前的字母)

A.

B.

C.

D.

(2)如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。木箱和小木块都具有一定的质量。现使木箱获得一个向右的初速度,则。(填选项前的字母)

A. 小木块和木箱最终都将静止
B. 小木块最终将相对木箱静止,二者一起向右运动
C. 小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动
D. 如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中物理综合题