如图5-3-8所示,光滑坡道顶端距水平面高度为h,质量为m的小物块 从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端恰位于滑道的末端O点。已知在OM段,物块A与水平面间的动摩擦因数均为,其余各处的摩擦不计,重力加速度为g,求:
物块速度滑到O点时的速度大小;
弹簧为最大压缩量d时的弹性势能(设弹簧处于原长时弹性势能为零)
若物块能够被弹回到坡道上,则它能够上升的最大高度是多少?
如图5—10所示,电动传送带以恒定速度v0=1.2m/s运行,传送带与水平面的夹角α=37°,现将质量m=20kg的物品箱轻放到传送带底端,经过一段时间后,物品箱被送到h=1.8m的平台上,已知物品箱与传送带间的动摩擦因数μ=0.85,不计其他损耗,则
每件物品箱从传送带底端送到平台上,需要多少时间?
每输送一个物品箱,电动机需增加消耗的电能是多少焦耳?(g=10m/s2。Sin37°=0.6)
如图所示,带负电的小球静止在水平放置的平行板电容 器两板间,距下板0.8 cm,两板间的电势差为300 V.如果两板间电势差减小到60 V,则带电小球运动到极板上需多长时间?
光滑的水平面上,相隔一定距离旋转着质量均为m的两小物块1和2(均视作质点),某时刻起,给二者施以反向的水平力F1和F2,作用相同的距离S后撤去两力,之后两个物块在相向运动过程中,某时刻同时经过水平面上距离为L=1.8m的A、B两点,此后在t1=1.8s时刻物块1返回A点,物块2在t2=0.9s时刻返回B点,已知两物块碰撞时间极短,且无能量损失,由此请计算; 两物块发生碰撞的位置与A点的距离及F1∶F2.
资料:理论分析表明,逃逸速度是环绕速度的倍.即,由此可知,天体的质量M越大,半径R越小,逃逸速度也就越大,也就是说,其表面的物体就越不容易脱离它的束缚.有些恒星,在它一生的最后阶段,强大的引力把其中的物质紧紧的压在一起,密度极大,每立方米的质量可达数吨.它们的质量非常大,半径又非常小,其逃逸速度非常大.于是,我们自然要想,会不会有这样的天体,它的质量更大,半径更小,逃逸速度更大,以m/s的速度传播的光都不能逃逸?如果宇宙中真的存在这样的天体,即使它确实在发光,光也不能进入太空,我们根本看不到它.这种天体称为黑洞(black hole)。1970年,科学家发现了第一个很可能是黑洞的目标.已知m/s,求:
(1)逃逸速度大于真空中光速的天体叫黑洞(black hole),设某黑洞的质量等于太阳的质量kg,求它的可能最大半径(这个半径叫做Schwarzchild半径).
(2)在目前天文观测范围内,物质的平均密度为,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度c,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大?(球的体积计算方程)
两个质量均为m的物体,由轻质硬杆相连,形如一个“哑铃”,围绕一个质量为M的天体旋转,如图所示,两物体和天体质心在一条直线上,两物体分别以和为半径绕M做圆周运动,两物体成了M的卫星,求此卫星的运动周期和轻质硬杆分别对A、B的弹力。
一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度抛出一个小球,测得小球经过时间t落回地出点,已知该星球半径为R,万有引力常量为G,求:
(1)该星球表面的重力加速度;
(2)该星球的密度。
在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力。已知火星的一个卫星的圆轨道的半径为r,周期为T。火星可视为半径为的均匀球体。
宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度。
2003年10月15日,我国成功发射了“神舟”五号载人宇宙飞船。火箭全长58.3m,起飞质量为480t,刚起飞时,火箭竖直升空,航天员杨利伟有较强的超重感,仪器显示他对座舱的最大压力达到他体重的5倍。飞船进入轨道后,21h内环绕地球飞行了14圈,将飞船运行的轨道简化为圆形。求
(1)点火发射时,火箭的最大推力。(g取10)
(2)该飞船运行轨道与地球同步卫星的轨道半径之比。
两个靠得很近的恒星称为双星,这两颗星必定以一定角速度绕二者连线上的某一点转动才不至于由于万有引力的作用而吸引在一起,已知两颗星的质量分别为,相距为L,试求;
(1)两颗星转动中心的位置;
(2)这两颗星转动的周期。
如图所示,沿水平方向放置一条平直光滑槽,它垂直穿过开有小孔的两平行薄板,板相距3.5L。槽内有两个质量均为m的小球A和B,球A带电量为 +2q,球B带电量为-3q,两球由长为2L的轻杆相连,组成一带电系统。最初A和B分别静止于左板的两侧,离板的距离均为L。若视小球为质点,不计轻杆的质量,在两板间加上与槽平行向右的匀强电场E后(设槽和轻杆由特殊绝缘材料制成,不影响电场
的分布),求:
球B刚进入电场时,带电系统的速度大小;
带电系统从开始运动到速度第一次为零所需的时间。
已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球绕地球的运转周期,地球的自转周期,地球表面的重力加速度g。某同学根据以上条件,提出一种估算地球质量M的方法:
同步卫星绕地心做圆周运动,由得。
(1)请判断上面的结果是否正确,并说明理由。如果不正确,请给出正确的解法和结果。
(2)请根据已知条件再提出两种估算地球质量的方法并解得结果。
某游乐场中有一种叫“空中飞椅”的游乐设施,其基本装置是将绳子上端固定在转盘的边缘上,绳子下端连接座椅,人坐在座椅上随转盘旋转而在空中飞旋。若将人和座椅看成是一个质点,则可简化为如图所示的物理模型。其中P为处于水平面内的转盘,可绕竖直转轴转动,设绳长l="10" m,质点的质量m= 60kg,转盘静止时质点与转轴之间的距离d =4m。转盘逐渐加速转动,经过一段时间后质点与转盘一起做匀速圆周运动,此时绳与竖直方向的夹角。(不计空气阻力及绳重,绳子不可伸长,sin ="0." 6,cos="0." 8,g=10)求:
(1)质点与转盘一起做匀速圆周运动时转盘的角速度及绳子的拉力;
(2)质点从静止到做匀速圆周运动的过程中,绳子对质点做的功。