如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD的光滑,内圆A′B′C′D′的上半部分B′C′D′粗糙,下半部分B′A′D′光滑。一质量m=0.1kg的小球从轨道的最低点A,以初速度v0向右运动,球的尺寸略小于两圆间距,球运动的半径R=0.2m,取g=10m/s2。
(1)若要使小球始终紧贴外圆做完整的圆周运动,初速度v0至少为多少?
(2)若v0=3m/s,经过一段时间小球到达最高点,内轨道对小球的支持力N=1N,则小球在这段时间内克服摩擦力做的功是多少?
(3)若v0=3m/s,经过足够长的时间后,小球经过最低点A时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?
(本题12分。第一小题3分。第2小题3分,第3小题6分)
如图所示,一不可伸长的轻绳上端悬挂于O点,下端系一质量m=1.0kg的小球。现将小球拉到A点(保持绳绷直)由静止释放,当它经过B点时绳恰好被拉断,小球平抛后落在水平地面上的C点。地面上的D点与OB在同一竖直线上,已知绳长L=1.0m,B点离地高度H=1.0m,A、B两点的高度差h=0.5m,重力加速度g取10m/s2,不计空气阻力影响,求:
(1)地面上DC两点间的距离s;
(2)轻绳所受的最大拉力大小。
质量为M、长为L的杆水平放置,杆两端A、B系着长为3L的不可伸长且光滑的柔软轻绳,绳上套着一质量为m的小铁环.已知重力加速度为g.不计空气影响.
(1)现让杆和环均静止悬挂在空中,如图甲,求绳中拉力的大小;
(2)若杆与环保持相对静止,在空中沿AB方向水平向右做匀加速直线运动,此时环恰好悬于A端的正下方,如图乙所示.
①求此状态下杆的加速度大小a;
②为保持这种状态需在杆上施加一个多大的外力?方向如何?
如图所示,两根平行金属导轨与水平面间的夹角为θ=37°,导轨间距为l=0.50 m,金属杆ab、cd的质量均为m=1 kg,电阻均为r=0.10 Ω,垂直于导轨水平放置.整个装置处于匀强磁场中,磁场方向垂直于导轨平面向上,磁感应强度B=2.0 T.用平行于导轨方向的拉力拉着ab杆匀速向上运动,两杆与斜面间的动摩擦因数μ=0.3,不计导轨电阻,重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.则:要使cd杆静止在斜面上,拉力应为多大?
如图所示,粗糙水平轨道AB与竖直平面内的光滑半圆轨道BDC在B处平滑连接,B、C分别为半圆轨道的最低点和最高点,D为半圆轨道的最右端。一个质量m的小物体P被一根细线拴住放在水平轨道上,细线的左端固定在竖直墙壁上。在墙壁和P之间夹一根被压缩的轻弹簧,此时P到B点的距离为x0。物体P与水平轨道间的动摩擦因数为μ,半圆轨道半径为R。现将细线剪断,P被弹簧向右弹出后滑上半圆轨道,恰好能通过C点。试求:
(1)物体经过B点时的速度的大小?
(2)细线未剪断时弹簧的弹性势能的大小?
(3)物体经过D点时合力的大小?
如图所示,一根长0.1 m的细线,一端系着一个质量为0.18 kg的小球,拉住线的另一端,使小球在光滑的水平桌面上做匀速圆周运动,使小球的转速很缓慢地增加,当小球的转速增加到开始时转速的3倍时,细线断开,线断开前的瞬间线受到的拉力比开始时大40 N,求:
(1)线断开前的瞬间,线受到的拉力大小;
(2)线断开的瞬间,小球运动的线速度大小;
(3)如果小球离开桌面时,速度方向与桌边缘的夹角为60° ,桌面高出地面0.8 m,求小球飞出后的落地点距桌边缘的水平距离.
如图所示,质量m1=0.3 kg的小车静止在光滑的水平面上,车长L=1.5 m,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g=10 m/s2,求
(1)物块在车面上滑行的时间t;
(2)物块克服摩擦力做的功;
(3)在此过程中转变成的内能.
在如图所示的竖直平面内,物体A和带正电的物体B用跨过定滑轮的绝缘轻绳连接,分别静止于倾角θ=37°的光滑斜面上的M点和粗糙绝缘水平面上,轻绳与对应平面平行.劲度系数k=5 N/m的轻弹簧一端固定在O点,一端用另一轻绳穿过固定的光滑小环D与A相连,弹簧处于原长,轻绳恰好拉直,DM垂直于斜面.水平面处于场强E=5×104 N/C、方向水平向右的匀强电场中.已知A、B的质量分别为mA=0.1 kg和mB=0.2 kg,B所带电荷量q=+4×10-6 C.设两物体均视为质点,不计滑轮质量和摩擦,绳不可伸长,弹簧始终在弹性限度内,B电荷量不变.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.
(1)求B所受静摩擦力的大小;
(2)现对A施加沿斜面向下的拉力F,使A以加速度a=0.6 m/s2开始做匀加速直线运动.A从M到N的过程中,B的电势能增加了ΔEp=0.06 J.已知DN沿竖直方向,B与水平面间的动摩擦因数μ=0.4.求A到达N点时拉力F的瞬时功率.
如图甲所示,足够长的光滑平行金属导轨MN、PQ所在平面与水平面成30°角,两导轨的间距l=0.50 m,一端接有阻值R=1.0 Ω的电阻.质量m=0.10 kg的金属棒ab置于导轨上,与导轨垂直,电阻r=0.25 Ω.整个装置处于磁感应强度B=1. 0 T的匀强磁场中,磁场方向垂直于导轨平面向下.t=0时刻,对金属棒施加一平行于导轨向上的外力F,使之由静止开始运动,运动过程中电路中的电流随时间t变化的关系如图乙所示.电路中其他部分电阻忽略不计,g取10 m/s2.求:
(1)4.0 s末金属棒ab瞬时速度的大小;
(2)3.0 s末力F的瞬时功率;
(3)已知0~4.0 s时间内电阻R上产生的热量为0.64 J,试计算F对金属棒所做的功.
“电子能量分析器”主要由处于真空中的电子偏转器和探测板组成.偏转器是由两个相互绝缘、半径分别为RA和RB的同心金属半球面A和B构成,A、B为电势值不等的等势面,其过球心的截面如图所示.一束电荷量为e、质量为m的电子以不同的动能从偏转器左端M板正中间小孔垂直入射,进入偏转电场区域,最后到达偏转器右端的探测板N,其中动能为Ek0的电子沿等势面C做匀速圆周运动到达N板的正中间.忽略电场的边缘效应.
(1)判断半球面A、B的电势高低,并说明理由;
(2)求等势面C所在处电场强度E的大小;
(3)若半球面A、B和等势面C的电势分别为φA、φB和φC,则到达N板左、右边缘处的电子,经过偏转电场前、后的动能改变量ΔEk左和ΔEk右分别为多少?
(4)比较|ΔEk左|与|ΔEk右|的大小,并说明理由.
如图所示的坐标平面内,y轴左侧存在方向垂直纸面向外、磁感应强度大小B1=0.20 T的匀强磁场,在y轴的右侧存在方向垂直纸面向里,宽度d=12.5 cm的匀强磁场B2,某时刻一质量m=2.0×10-8 kg、电荷量q=+4.0×10-4 C的带电微粒(重力可忽略不计),从x轴上坐标为(-0.25 m,0)的P点以速度v0=2.0×103 m/s沿y轴正方向运动.试求:
(1)微粒在y轴左侧磁场中运动的轨道半径;
(2)微粒第一次经过y轴时,速度方向与y轴正方向的夹角;
(3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件.
如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行.a、b为轨道直径的两端,该直径与电场方向平行.一电荷量为q(q>0)的质点沿轨道内侧运动,经过a点和b点时对轨道压力的大小分别为FNa和FNb.不计重力,求电场强度的大小E、质点经过a点和b点时的动能.
如图所示,板长为L的平行板电容器倾斜固定放置,极板与水平线夹角θ=30°,某时刻一质量为m、带电荷量为q的小球由正中央A点静止释放,小球离开电场时速度是水平的(提示:离开的位置不一定是极板边缘),落到距离A点高度为h的水平面处的B点,B点放置一绝缘弹性平板M,当平板与水平夹角α=45°时,小球恰好沿原路返回A点.求:
(1)电容器极板间的电场强度E;
(2)平行板电容器的板长L;
(3)小球在A、B间运动的周期T.
(1)地震波中既有横波又有纵波.如图所示,甲是日本地震中的一列横波在t=0时刻的波形图,乙为由这列横波引起的x=2 km处质点的振动图象.
①现测得该横波从震中传到仙台的时间是45 s,震中距离仙台有多远?
②判断波的传播方向,并确定t=1.75 s时,x=4 km处的质点的位移.
(2)如图,一个三棱镜的截面为等腰直角三角形ABC.一束光线沿平行于BC边的方向射到AB边,进入棱镜后直接射到AC边上,要求光线不能直接从AC界面射出,那么三棱镜的折射率需要满足什么条件?
如图,在竖直平面内有一固定光滑轨道,其中AB是长为R的水平直轨道,BCD是圆心为O、半径为R的圆弧轨道,两轨道相切于B点.在外力作用下,一小球从A点由静止开始做匀加速直线运动,到达B点时撤除外力.已知小球刚好能沿圆轨道经过最高点C,重力加速度大小为g.求:
(1)小球在AB段运动的加速度的大小;
(2)小球从D点运动到A点所用的时间.