如图所示,有一半径为R1=1m的圆形磁场区域,圆心为O,另有一外半径为R2=m、内半径为R1的同心环形磁场区域,磁感应强度大小均为B=0.5T,方向相反,均垂直于纸面。一带正电的粒子从平行极板下板P点静止释放,经加速后通过上板小孔Q,垂直进入环形磁场区域,已知点P、Q、O在同一竖直线上,上极板与环形磁场外边界相切,粒子比荷q/m=4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应。求:
(1)若加速电压U1=1.25×102V,则粒子刚进入环形磁场时的速度v0为多大?
(2)要使粒子不能进入中间的圆形磁场区域,加速电压U2应满足什么条件?
(3)若改变加速电压大小,可使粒子进入圆形磁场区域,且能水平通过圆心O,最后返回到出发点,则粒子从Q孔进入磁场到第一次经过O点所用的时间为多少?
如图所示,在光滑的水平桌面上有一长为L=2 m的木板C,它的两端各有一块挡板,C的质量为mC=5 kg,在C的中央并排放着两个可视为质点的滑块A与B,其质量分别为mA=1 kg、mB=4 kg,开始时A、B、C均处于静止状态,并且A、B间夹有少许炸药,炸药爆炸使得A以vA=6 m/s的速度水平向左运动,不计一切摩擦,两滑块中任意一块与挡板碰撞后就与挡板合成一体,爆炸与碰撞时间不计,求:
(1)当两滑块都与挡板碰撞后,板C的速度多大?
(2)从爆炸开始到两个滑块都与挡板碰撞为止,板C的位移多大?方向如何?
(10分). “┙”型滑板,(平面部分足够长),质量为4m,距滑板的A壁为L1距离的B处放有一质量为m,电量为+q的大小不计的小物体,小物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中,初始时刻,滑板与小物体都静止,试求:
(1)释放小物体,第一次与滑板A壁碰前小物体的速度v1多大?
(2)若小物体与A壁碰后相对水平面的速度大小为碰前的,碰撞时间极短,则碰撞后滑板速度多大?(均指对地速度)
(3)若滑板足够长,小物体从开始运动到第二次碰撞前,电场力做功为多大?
如图所示,从电子枪射出的电子束(初速度不计)经电压加速后,从一对金属板Y和正中间平行金属板射入,电子束穿过两板空隙后最终垂直打在荧光屏上的O点。若现在用一输出电压为的稳压电源与金属板连接,在间产生匀强电场,使得电子束发生偏转。若取电子质量为,两板间距,板长,板的末端到荧光屏的距离,整个装置处于真空中,不考虑重力的影响,试回答以下问题:
(1)电子束射入金属板时速度为多大?
(2)加上电压后电子束打到荧光屏上的位置到O点的距离为多少?
(3)如果两金属板间的距离可以随意调节(保证电子束仍从两板正中间射入),其它条件都不变,试求电子束打到荧光屏上的位置到O点距离的取值范围。
如图所示,内壁光滑半径为R的圆形轨道,固定在竖直平面内.质量为m1的小球静止在轨道最低点,另一质量为m2的小球(两小球均可视为质点)从内壁上与圆心O等高的位置由静止释放,运动到最低点时与m1发生碰撞并粘在一起.求
⑴小球m2刚要与m1发生碰撞时的速度大小;
⑵碰撞后,m1、m2能沿内壁运动所能达到的最大高度(相对碰撞点).
(1)从宏观现象中总结出来的经典物理学规律不一定都能适用于微观体系。但是在某些问题中利用经典物理学规律也能得到与实际比较相符合的结论。
例如,玻尔建立的氢原子模型,仍然把电子的运动看做经典力学描述下的轨道运动。他认为,氢原子中的电子在库仑力的作用下,绕原子核做匀速圆周运动。已知电子质量为m,电荷为e,静电力常量为k,氢原子处于基态时电子的轨道半径为r1。
(1)氢原予处于基态时,电子绕原子核运动,可等效为环形电流,求此等效电流值。
(2)在微观领域,动量守恒定律和能量守恒定律依然适用。
a.己知光在真空中的速度为c,氢原子在不同能级之间跃迁时,跃迁前后可认为质量不变,均为m。设氢原子处于基态时的能量为E1(E1<O),当原子处于第一激发态时的能量为E1/4,求原子从第一激发态跃迁到基态时,放出光子的能量和氢原子的反冲速度。
b.在轻核聚变的核反应中,两个氘核()以相同的动能Eo=0.35MeV做对心碰撞,假设该反应中释放的核能全部转化为氦核()和中子()的动能。已知氘核的质量mD=2.0141u,中子的质量mn=1.0087u,氦核的质量MHe=3.0160u,其中1u相当于931MeV。在上述轻核聚变的核反应中生成的氦核和中子的动能各是多少MeV(结果保留1位有效数字)?
如图,电阻不计的足够长的平行光滑金属导轨PX、QY相距L=0.5m,底端连接电阻R=2Ω,导轨平面倾斜角θ=30°,匀强磁场垂直于导轨平面向上,磁感应强度B=1T。质量m=40g、电阻R=0.5Ω的金属棒MN放在导轨上,金属棒通过绝缘细线在电动机牵引下从静止开始运动,经过时间t1=2s通过距离x=1.5m,速度达到最大,这个过程中电压表示数U0=8.0V,电流表实数I0=0.6A,示数稳定,运动过程中金属棒始终与导轨垂直,细线始终与导轨平行且在同一平面内,电动机线圈内阻r0=0.5Ω,g=10m/s2.。求:
(1)细线对金属棒拉力的功率P多大?
(2)从静止开始运动的t1=2s时间内,电阻R上产生的热量QR是多大?
(3)用外力F代替电动机沿细线方向拉金属棒MN,使金属棒保持静止状态,金属棒到导轨下端距离为d=1m。若磁场按照右图规律变化,外力F随着时间t的变化关系式?
两平行金属光滑导轨间的距离,导轨所在平面与水平面之间的夹角为,在导轨所在的空间内分布着磁感应强度大小、方向垂直于导轨所在平面向上的匀强磁场,导轨的一端接有水平放置的线圈,内阻,面积为,匝数匝。已知线圈平面内有垂直平面向上的磁场以的变化率均匀减小,现将一质量kg、内阻的导体棒垂直导轨放置,与导轨接触良好,开关S接通后撤去外力导体棒能保持静止,重力加速度。(,)求:
(1)线圈上产生的电动势大小;
(2)通过定值电阻的电流大小.
一般教室的门上都按装一种暗锁,这种暗锁由外壳A.骨架B.弹簧C(劲度系数为)、锁舌D(倾斜角θ=45°,质量忽略不计)、锁槽E以及连杆、锁头等部件组成,如图甲所示(俯视图)。设锁舌D与外壳A和锁槽E之间的摩擦因数均为μ且最大静摩擦力与滑动摩擦力相等。有一次放学后,小明准备锁门,当他用某力拉门时,不能将门关上,此刻暗锁所处的状态如图乙所示,P为锁舌D与锁槽E之间的接触点,弹簧由于被压缩而缩短了,问:
(1)此时,外壳A对所舌D的摩擦力的方向。
(2)此时,锁舌D与锁槽E之间的正压力的大小。
(3)当满足一定条件时,无论用多大的力,也不能将门关上(这种现象称为自锁)。求暗锁能够保持自锁状态时μ的取值范围。
如图所示,水平绝缘地面上有一底部带有小孔的绝缘弹性竖直挡板AC,板高,与A端等高处有一水平放置的篮筐,圆形筐口的圆心M离挡板的距离,AC左端及A端与筐口的连线上方存在匀强磁场和匀强电场,磁场方向垂直纸面向里,磁感应强度;现有一质量、电量、直径略小于小孔宽度的带电小球(视为质点),以某一速度从C端水平射入场中做匀速圆周运动,若球可直接从M点落入筐中,也可与AC相碰后从M点落入筐中,且假设球与AC相碰后以原速率沿碰前速度的反方向弹回,碰撞时间不计,碰撞时电荷量不变,忽略小球运动对电场、磁场的影响()。求:
(1)电场强度的大小与方向;
(2)小球运动的最大速率;
(3)若小球与AC碰撞后从M点落入筐中,求小球运动时间最长时到达M点速度方向与水平方向夹角的正弦值。
如图所示,两块平行极板AB、CD正对放置,极板CD的正中央有一小孔,两极板间距离AD为d,板长AB为2d,两极板间电势差为U,在ABCD构成的矩形区域内存在匀强电场,电场方向水平向右。在ABCD矩形区域以外有垂直于纸面向里的范围足够大的匀强磁场。极板厚度不计,电场、磁场的交界处为理想边界。
将一个质量为m、电荷量为+q的带电粒子在极板AB的正中央O点,由静止释放。不计带电粒子所受重力。
(1)求带电粒子经过电场加速后,从极板CD正中央小孔射出时的速度大小;
(2)为了使带电粒子能够再次进入匀强电场,且进入电场时的速度方向与电场方向垂直,求磁场的磁感应强度的大小,并画出粒子运动轨迹的示意图。
(3)通过分析说明带电粒子第二次离开电场时的位置,并求出带电粒子从O点开始运动到第二次离开电场区域所经历的总时间。
如图所示,真空中有中间开有小孔的两平行金属板竖直放置构成电容器,给电容器充电使其两极板间的电势差,以电容器右板小孔所在位置为坐标原点建立图示直角坐标系xoy。第一象限内有垂直纸面向里的匀强磁场,磁场的上边界MN平行于x轴,现将一质量、且重力不计的带电粒子从电容器的左板小孔由静止释放,经电场加速后从右板小孔射出磁场,该粒子能经过磁场中的P点,P点纵坐标为。若保持电容器的电荷量不变,移动左板使两板间距离变为原来的四分之一,调整磁场上边界MN的位置,粒子仍从左板小孔无初速度释放,还能通过P点,且速度方向沿y轴正向。求磁场的磁感应强度B?
如图所示,在绝缘水平面上,相距为L的A、B两点处分别固定着两个等量正电荷.a、b是AB连线上两点,其中Aa=Bb=,O为AB连线的中点.一质量为m带电量为+q的小滑块(可视为质点)以初动能E0从a点出发,沿AB直线向b运动,其中小滑块第一次经过O点时的动能为初动能的n倍(n>1),到达b点时动能恰好为零,小滑块最终停在O点,求:
(1)小滑块与水平面间的动摩擦因数μ.
(2)Ob两点间的电势差Uob.
(3)小滑块运动的总路程S.
如题图所示,在半径为a的圆柱空间中(图中圆为其横截面)充满磁感应强度大小为B的均匀磁场,其方向平行于轴线远离读者.在圆柱空间中垂直轴线平面内固定放置一绝缘材料制成的边长为L=1.6a的刚性等边三角形框架ΔDEF,其中心O位于圆柱的轴线上.DE边上S点()处有一发射带电粒子的源,发射粒子的方向皆在题图中截面内且垂直于DE边向下。发射粒子的电量皆为q(>0),质量皆为m,但速度v有各种不同的数值。若这些粒子与三角形框架的碰撞无能量损失(不能与圆柱壁相碰),电量也无变化,且每一次碰撞时速度方向均垂直于被碰的边。试问:
(1)带电粒子经多长时间第一次与DE边相碰?
(2)带电粒子速度v的大小取哪些数值时可使S点发出的粒子最终又回到S点?
(3)这些粒子中,回到S点所用的最短时间是多少?
如图所示,固定的凹槽水平表面光滑,其内放置L形滑板P,滑板左端为半径R=1.0 m的1/4圆弧面,A是圆弧的端点,BC段表面粗糙,长为L=3m,其余段表面光滑,小滑块P1和P2的质量均为m=1kg,滑板的质量M=4kg.P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.40,最大静摩擦力近似等于滑动摩擦力,开始时滑板紧靠槽的左端,滑板的右端C与槽的右端相距x=0.1m,P2静止在粗糙面的B点,P1从A点正上方高为h=0.8m处自由落下,经过弧面与P2在B点发生弹性碰撞. 滑板与槽的右端碰撞后与槽牢固粘连,P2与槽的碰撞为弹性碰撞,P1与P2视为质点, 取g=10 m/s2.求:
(1)P1运动到B点时对滑板的压力;
(2)P2在BC段向右滑动时,滑板的加速度为多大?
(3)P1和P2最终静止后,P1与P2间的距离为多少?