高中物理

如图所示,AB为竖直墙壁,A点和P点在同一水平面上。空间存在着竖直方向的匀强电场。将一带电小球从P点以速度v0向A抛出,结果打在墙上的C处。若撤去电场,将小球从P点以初速v0/2向A抛出,也正好打在墙上的C点。求:

(1)第一次抛出后小球所受电场力和重力之比
(2)小球两次到达C点时竖直速度之比

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,串联阻值为的闭合电路中,面积为的正方形区域abcd存在一个方向垂直纸面向外、磁感应强度均匀增加且变化率为k的匀强磁场,abcd的电阻值也为,其他电阻不计.电阻两端又向右并联一个平行板电容器.在靠近板处由静止释放一质量为、电量为的带电粒子(不计重力),经过板的小孔进入一个垂直纸面向内、磁感应强度为B的圆形匀强磁场,已知该圆形匀强磁场的半径为。求:
(1)电容器获得的电压;
(2)带电粒子从小孔射入匀强磁场时的速度;
(3)带电粒子在圆形磁场运动时的轨道半径及它离开磁场时的偏转角.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,传送带AB总长为l=10cm,与一个半径为R=0.4m的光滑四分之一圆轨道BC相切于B点,传送带速度恒为v=6m/s,方向向右,现有一个滑块以一定初速度从A点水平滑上传送带,滑块质量为m=10kg,滑块与传送带间的动摩擦因数为μ=0.1,已知滑块运动到B端时,刚好与传送带同速,求:

(1)滑块的初速度
(2)滑块能上升的最大高度h;
(3)求滑块第二次子啊传送带上滑行时,滑块和传送带系统产生的内能

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在高能物理研究中,粒子回旋加速器起着重要作用,如图甲为它的示意图。它由两个铝制D型金属扁盒组成,两个D形盒正中间开有一条窄缝。两个D型盒处在匀强磁场中并接有高频交变电压。图乙为俯视图,在D型盒上半面中心S处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D型盒中。在磁场力的作用下运动半周,再经狭缝电压加速。如此周而复始,最后到达D型盒的边缘,获得最大速度,由导出装置导出。已知正离子的电荷量为q,质量为m,加速时电极间电压大小为U,磁场的磁感应强度为B,D型盒的半径为R。每次加速的时间很短,可以忽略不计。正离子从离子源出发时的初速度为零,求
(1)为了使正离子每经过窄缝都被加速,求交变电压的频率
(2)求离子能获得的最大动能
(3)求离子第1次与第n次在下半盒中运动的轨道半径之比。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

机场大道某路口,有按倒计时显示的时间显示灯。有一辆汽车在平直路面上以36Km/h 的速度朝该路口停车线匀速前进,在车头前端离停车线70 m 处司机看到前方绿灯刚好显示“5”。交通规则规定:绿灯结束时车头已越过停车线的汽车允许通过。
(1)若不考虑该路段的限速,司机的反应时间1s,司机想在剩余时间内使汽车做匀加速直线运动以通过停车线,则汽车的加速度a1至少多大?
(2)若考虑该路段的限速,司机的反应时间为1s,司机反应过来后汽车先以a2=2m/s2的加速度沿直线加速3 s,为了防止超速,司机在加速结束时立即踩刹车使汽车做匀减速直行,结果车头前端与停车线相齐时刚好停下来,求刹车后汽车加速度a3大小(结果保留两位有效数字)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图甲所示,加速电场的加速电压为U0 =" 50" V,在它的右侧有水平正对放置的平行金属
板a、b构成的偏转电场,且此区间内还存在着垂直纸面方向的匀强磁场B0.已知金属板的
板长L = 0.1 m,板间距离d = 0.1 m,两板间的电势差uab随时间变化的规律如图乙所示.紧
贴金属板a、b的右侧存在半圆形的有界匀强磁场,磁感应强度B = 0.01 T,方向垂直纸面
向里,磁场的直径MN = 2R = 0.2 m即为其左边界,并与中线OO′垂直,且与金属板a的
右边缘重合于M点.两个比荷相同、均为q/m = 1×108 C/kg的带正电的粒子甲、乙先后由静
止开始经过加速电场后,再沿两金属板间的中线OO′ 方向射入平行板a、b所在的区域.不
计粒子所受的重力和粒子间的相互作用力,忽略偏转电场两板间电场的边缘效应,在每个粒
子通过偏转电场区域的极短时间内,偏转电场可视作恒定不变.
(1)若粒子甲由t = 0.05 s时飞入,恰能沿中线OO′ 方向通过平行金属板a、b正对的区域,试分析该区域的磁感应强度B0的大小和方向;
(2)若撤去平行金属板a、b正对区域的磁场,粒子乙恰能以最大动能飞入半圆形的磁场区域,试分析该粒子在该磁场中的运动时间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,光滑水平直轨道上有三个质量均为m=1kg的物块A、B、C处于静止状态。 B的左侧固定一轻弹簧,弹簧左侧的挡板质量不计。现使A以速度v0=4m/s朝B运动,压缩弹簧;当A、 B速度相等时,B与C恰好相碰并粘接在一起,且B和C碰撞过程时间极短。此后A继续压缩弹簧,直至弹簧被压缩到最短。在上述过程中,求:

(1)B与C相碰后的瞬间,B与C粘接在一起时的速度;
(2)整个系统损失的机械能;
(3)弹簧被压缩到最短时的弹性势能。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,A、B质量分别为 m1=1kg, m2=2kg,置于小车C上,小车的质量为 m3=1kg,A、B与小车的动摩擦因数0.5,小车静止在光滑的水平面上。某时刻炸药爆炸,若A、B间炸药爆炸的能量有12 J转化为A、B的机械能,其余能量转化为内能。A、B始终在小车表面水平运动,小车足够长,求:

①炸开后A、B获得的速度各是多少?
②A、B在小车上滑行的时间各是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一般教室的门上都按装一种暗锁,这种暗锁由外壳A.骨架B.弹簧C(劲度系数为)、锁舌D(倾斜角θ=45°,质量忽略不计)、锁槽E以及连杆、锁头等部件组成,如图甲所示(俯视图)。设锁舌D与外壳A和锁槽E之间的摩擦因数均为μ且最大静摩擦力与滑动摩擦力相等。有一次放学后,小明准备锁门,当他用某力拉门时,不能将门关上,此刻暗锁所处的状态如图乙所示,P为锁舌D与锁槽E之间的接触点,弹簧由于被压缩而缩短了,问:

(1)此时,外壳A对所舌D的摩擦力的方向。
(2)此时,锁舌D与锁槽E之间的正压力的大小。
(3)当满足一定条件时,无论用多大的力,也不能将门关上(这种现象称为自锁)。求暗锁能够保持自锁状态时μ的取值范围。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,水平绝缘地面上有一底部带有小孔的绝缘弹性竖直挡板AC,板高,与A端等高处有一水平放置的篮筐,圆形筐口的圆心M离挡板的距离,AC左端及A端与筐口的连线上方存在匀强磁场和匀强电场,磁场方向垂直纸面向里,磁感应强度;现有一质量、电量、直径略小于小孔宽度的带电小球(视为质点),以某一速度从C端水平射入场中做匀速圆周运动,若球可直接从M点落入筐中,也可与AC相碰后从M点落入筐中,且假设球与AC相碰后以原速率沿碰前速度的反方向弹回,碰撞时间不计,碰撞时电荷量不变,忽略小球运动对电场、磁场的影响()。求:

(1)电场强度的大小与方向;
(2)小球运动的最大速率;
(3)若小球与AC碰撞后从M点落入筐中,求小球运动时间最长时到达M点速度方向与水平方向夹角的正弦值。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,两块平行极板AB、CD正对放置,极板CD的正中央有一小孔,两极板间距离AD为d,板长AB为2d,两极板间电势差为U,在ABCD构成的矩形区域内存在匀强电场,电场方向水平向右。在ABCD矩形区域以外有垂直于纸面向里的范围足够大的匀强磁场。极板厚度不计,电场、磁场的交界处为理想边界。

将一个质量为m、电荷量为+q的带电粒子在极板AB的正中央O点,由静止释放。不计带电粒子所受重力。
(1)求带电粒子经过电场加速后,从极板CD正中央小孔射出时的速度大小;
(2)为了使带电粒子能够再次进入匀强电场,且进入电场时的速度方向与电场方向垂直,求磁场的磁感应强度的大小,并画出粒子运动轨迹的示意图。
(3)通过分析说明带电粒子第二次离开电场时的位置,并求出带电粒子从O点开始运动到第二次离开电场区域所经历的总时间。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,真空中有中间开有小孔的两平行金属板竖直放置构成电容器,给电容器充电使其两极板间的电势差,以电容器右板小孔所在位置为坐标原点建立图示直角坐标系xoy。第一象限内有垂直纸面向里的匀强磁场,磁场的上边界MN平行于x轴,现将一质量且重力不计的带电粒子从电容器的左板小孔由静止释放,经电场加速后从右板小孔射出磁场,该粒子能经过磁场中的P点,P点纵坐标为。若保持电容器的电荷量不变,移动左板使两板间距离变为原来的四分之一,调整磁场上边界MN的位置,粒子仍从左板小孔无初速度释放,还能通过P点,且速度方向沿y轴正向。求磁场的磁感应强度B?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在绝缘水平面上,相距为L的A、B两点处分别固定着两个等量正电荷.a、b是AB连线上两点,其中Aa=Bb=,O为AB连线的中点.一质量为m带电量为+q的小滑块(可视为质点)以初动能E0从a点出发,沿AB直线向b运动,其中小滑块第一次经过O点时的动能为初动能的n倍(n>1),到达b点时动能恰好为零,小滑块最终停在O点,求:

(1)小滑块与水平面间的动摩擦因数μ.
(2)Ob两点间的电势差Uob.
(3)小滑块运动的总路程S.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如题图所示,在半径为a的圆柱空间中(图中圆为其横截面)充满磁感应强度大小为B的均匀磁场,其方向平行于轴线远离读者.在圆柱空间中垂直轴线平面内固定放置一绝缘材料制成的边长为L=1.6a的刚性等边三角形框架ΔDEF,其中心O位于圆柱的轴线上.DE边上S点()处有一发射带电粒子的源,发射粒子的方向皆在题图中截面内且垂直于DE边向下。发射粒子的电量皆为q(>0),质量皆为m,但速度v有各种不同的数值。若这些粒子与三角形框架的碰撞无能量损失(不能与圆柱壁相碰),电量也无变化,且每一次碰撞时速度方向均垂直于被碰的边。试问:

(1)带电粒子经多长时间第一次与DE边相碰?
(2)带电粒子速度v的大小取哪些数值时可使S点发出的粒子最终又回到S点?
(3)这些粒子中,回到S点所用的最短时间是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,固定的凹槽水平表面光滑,其内放置L形滑板P,滑板左端为半径R=1.0 m的1/4圆弧面,A是圆弧的端点,BC段表面粗糙,长为L=3m,其余段表面光滑,小滑块P1和P2的质量均为m=1kg,滑板的质量M=4kg.P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.40,最大静摩擦力近似等于滑动摩擦力,开始时滑板紧靠槽的左端,滑板的右端C与槽的右端相距x=0.1m,P2静止在粗糙面的B点,P1从A点正上方高为h=0.8m处自由落下,经过弧面与P2在B点发生弹性碰撞. 滑板与槽的右端碰撞后与槽牢固粘连,P2与槽的碰撞为弹性碰撞,P1与P2视为质点, 取g=10 m/s2.求:

(1)P1运动到B点时对滑板的压力;
(2)P2在BC段向右滑动时,滑板的加速度为多大?
(3)P1和P2最终静止后,P1与P2间的距离为多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中物理计算题