如图所示,A是一块水平放置得铅板的截面,其厚度为d。MM´和NN´是一重力可忽略不计,质量为m,带电量为q的粒子在匀强磁场中的运动轨迹。粒子的运动轨迹与磁场方向垂直,并且粒子垂直穿过铅板。轨迹MM´的半径为r,轨迹NN´的半径为R,且R > r。求:
(1)粒子穿过铅板时的运动方向(回答向上或向下)
(2)粒子带何电荷。
(3)粒子穿过铅板时所受的平均阻力。
如图所示,某放射源A中均匀地向外辐射出平行于y轴的速度一定的α粒子,粒子质量为m,电荷量为q。为测定其从放射源飞出的速度大小,现让α粒子先经过一个磁感应强度为B、区域为半圆形的匀强磁场,经该磁场偏转后,它恰好能够沿x轴进入右侧的平行板电容器,并打到置于板N的荧光屏上出现亮点。当触头P从右端向左移动到滑动变阻器的中央位置时,通过显微镜头Q看到屏上的亮点恰好能消失。已知电源电动势为E,内阻为r0,滑动变阻器的总电阻R0=2 r0,求:
(1)α粒子从放射源飞出速度的大小;
(2)满足题意的α粒子在磁场中运动的总时间t;
(3)该半圆形磁场区域的半径R。
如图所示,在X轴上方有匀强磁场B,一个质量为,带电荷量为的粒子,以速度从O点射入磁场,角已知,粒子重力不计,求:
(1)粒子在磁场中运动的时间;
(2)粒子离开磁场的位置与O点间的距离。
如图甲所示,空间有Ⅰ区和Ⅲ区两个有理想边界的匀强磁场区域,磁感应强度大小均为B,方向如图所示。两磁场区域之间有宽度为s的无磁场区域Ⅱ。abcd是由均匀电阻丝做成的边长为L(L>s)的正方形线框,每边的电阻为R。线框以垂直磁场边界的速度v水平向右匀速运动,从Ⅰ区经过Ⅱ区完全进入Ⅲ区,线框ab边始终与磁场边界平行。求:
(1)当ab边在Ⅱ区运动时,dc边所受安培力的大小和方向;
(2)线框从完全在Ⅰ区开始到全部进入Ⅲ区的整个运动过程中产生的焦耳热;
(3)请在图乙的坐标图中画出,从ab边刚进入Ⅱ区,到cd边刚进入Ⅲ区的过程中,
d、a两点间的电势差Uda随时间t变化的图线。其中E0 = BLv。
如图21所示,水平直线MN为两个匀强磁场的分界面,MN上方的磁感应强度B1=B,MN下方的磁感应强度B2=2B,磁场方向均垂直纸面向外.在磁场的空间还存在匀强电场,电场强度大小为E,竖直向上.一带电小球从界面上的A点沿电场方向射入上部磁场区域后恰能在竖直方向上做匀速圆周运动.在A点的右侧的界面上有一点P,与A点的距离为d.要使小球能经过P点,则小球从A点射出的速度v应满足什么条件?
如图6 – 14所示,在x轴上方有磁感应强度大小为B,方向垂直纸面向里的匀强磁场.X轴下方有磁感应强度大小为B/2,方向垂直纸面向外的匀强磁场.一质量为m、电量为– q的带电粒子(不计重力),从x轴上的O点以速度v0垂直x轴向上射出.求:
(1)射出之后经多长时间粒子第二次到达x轴,粒子第二次到达x轴时离O点的距离是多少?
(2)若粒子能经过在x轴距O点为L的某点,试求粒子到该点所用的时间(用L与v0表达).
两个圆形区域内存在着匀强磁场,这两个圆的半径都是r,圆心都在y轴上,两圆相切,切点恰是原点O.两圆内磁场的磁感强度大小相同,但方向相反,上面的沿-z方向,下面的沿+z方向,如图所示.在坐标原点O处有一个放射源,放射出质量为m、电量为-q的带电粒子(重力不计),如果所有粒子都在xOy平面内,初速度大小都是v0,并且向各个方向的发射是均匀的.不计各粒子在运动过程中的相互作用.
(1)调整磁场磁感强度的大小,可以使得所有的粒子(除了沿-x方向运动的极少数粒子以外,下同),经过磁场的偏转后速度方向都互相平行,求这时的磁感强度B的值.
(2)在满足上述条件的情况下,在x轴右方较远处与y轴平行的屏上接收到的粒子都位于与y轴平行的一条线段上,其中y=o到y=a间的区域内的粒子数是全部粒子数的1/6,求a的值.
地球周围有磁场,由太空射来的带电粒子在此磁场中的运动称为磁漂移。以下描述的是一种假设的磁漂移运动。一带正电的粒子在x=0、y=0处沿y方向以某一速度v0运动,空间存在垂直于图中纸面向外的匀强磁场,在y>0的区域中,磁感强度为B1,在y<0的区域中磁感强度为B2,B2>B1,如图所示。
⑴ 把粒子在出发点x=0处作为第0次过x轴,试求粒子到第n次过x轴整个过程中,在x轴方向的平均速度v与v0之比,n只取奇数。
⑵ 若B2:B1= 4,当n很大时,v:v0趋于何值。
(1)若粒子恰好垂直于EC边射出磁场,求磁场的磁感应强度B为多少?
(2)改变磁感应强度的大小,粒子进入磁场偏转后能打到ED板,求粒子从进入磁场到第一次打到ED板的最长时间是多少?
(3)改变磁感应强度的大小,可以再延长粒子在磁场中的运动时间,求粒子在磁场中运动的极限时间。(不计粒子与ED板碰撞的作用时间。设粒子与ED板碰撞前后,电量保持不变并以相同的速率反弹)
(1)当线圈的ab边刚进入磁场时,它可能做什么运动,并分析各种运动下h的条件.
(2)设ab边刚进入磁场和刚穿出磁场时都作减速运动,且加速度大小相等。求线框经过磁场的过程中产生的焦耳热。
(3)设线圈刚好以匀速运动进入匀强磁场,此时线圈中的电流为I0,且线圈的边长L=h磁场的宽度H=2h。请在坐标系中定性画出线圈进入磁场到离开磁场的过程中,线圈中的电流i随下落高度x变化的图象。(不需要计算过程,按图象评分,设电流沿abcda如方向为正方向,x以磁场上边界为起点。)
如图所示,在垂直纸面向里的匀强磁场中,有一带电量为q的正离子自A点垂直射入磁场,沿半径为R的圆形轨道运动,运动半周到达B点时,由于吸收了附近若干静止的电子,沿另一个圆形轨道运动到BA的延长线上的C点,且AC的长度也为R.试求正离子在B点吸收的电量(不计重力).
(1)E0与E1的大小;
(2)若从M点射出的粒子恰从中点S孔垂直射入边长为a的正方形容器中,容器中存在如 图所示的匀强磁场,已知粒子运动的半径小于a。欲使粒子与器壁多次垂直碰撞后仍能从S孔射出(粒子与绝缘壁碰撞时无能量和电量损失),求磁感应强度B应满足的条件?
(3)在PQ间还有许多水平射入电场的粒子通过电场后也能从CD边水平射出,这些入射点到P点的距离应满足的条件?
如图所示,M、N是一电子在匀强磁场中做匀速圆周运动轨迹上的两点,MN的连线与磁场垂直,长度LMN=0.05m磁场的磁感应强度为B=9.1×10-4T。电子通过M点时速度的方向与MN间的夹角θ=30°,(电子的质量m=9.1×10-31kg,电荷量e=1.6×10-19c)求:
⑴ 电子做匀速圆周运动的轨道半径
⑵ 电子做匀速圆周运动的速率
⑶ 电子从M点运动到N点所用的时间