如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B,一带正电的粒子以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向夹角为θ=π/6,若粒子射出磁场的位置与O点的距离为L,试求:(要求必须画出示意图)(1)该粒子的电量和质量之比为多少?(2)该粒子在匀强磁场中运动的时间?
如图所示,质量M=8kg的长木板放在光滑水平面上,在长木板的右端施加一水平恒力F=8N,当长木板向右运动速率达到v1=10m/s时,在其右端有一质量m=2kg的小物块(可视为质点)以水平向左的速率v2=2m/s滑上木板,物块与长木板间的动摩擦因数μ=0.2,小物块始终没离开长木板,取10m/s2,求:(1)经过多长时间小物块与长木板相对静止;(2)长木板至少要多长才能保证小物块始终不滑离长木板;(3)上述过程中长木板对小物块摩擦力做的功.
如图所示,水平地面上有一辆固定有竖直光滑绝缘管的小车,管的底部有一质量m=0.2g、电荷量q=+8×10-5C的小球,小球的直径比管的内径略小.在管口所在水平面MN的下方存在着垂直纸面向里、磁感应强度B1= 15T的匀强磁场,MN面的上方还存在着竖直向上、场强E=25V/m的匀强电场和垂直纸面向外、磁感应强度B2=5T的匀强磁场.现让小车始终保持v=2m/s的速度匀速向右运动,以带电小球刚经过场的边界PQ为计时的起点,测得小球对管侧壁的弹力FN随高度h变化的关系如图所示.g取10m/s2,不计空气阻力.求: (1)小球刚进入磁场B1时加速度a的大小; (2)绝缘管的长度L; (3)小球离开管后再次经过水平面MN时距管口的距离△x.
如图所示,半径分别为r 和R的圆环竖直叠放(相切)于水平面上,一条公共斜弦过两圆切点且分别与两圆相交于a、b 两点.在此弦上铺一条光滑轨道,将一小球从a点由静止释放,设小球穿过切点时不受阻挡.求该小球从a点运动到b点所用的时间.
图示为宇宙中一恒星系的示意图,A为该星系的一颗行星,它绕中央恒星O的运行轨道近似为圆.已知引力常量为G,天文学家观测得到A行星的运行轨道半径为R0,周期为T0.(l)中央恒星O的质最是多大?(2)长期观测发现,A行星每隔t0时间其运行轨道便会偏离理论轨道少许,天文学家认为出现这种现象的原因可能是A行星外侧还存在着一颗未知的行星B(假设其运行的圆轨道与A在同一平面内,且与A的绕行方向相同).根据上述现象和假设,试估算未知行星月的运动周期和轨道半径.
货车正在以v1=10m/s的速度在平直的公路上前进,货车司机突然发现在其正后方S0=25米处有一辆小车以v2=20m/s的速度做同方向的匀速直线运动,货车司机为了不让小车追上,立即加大油门做匀加速运动,求:①若货车的加速度大小为a=4m/s2,小车能否追上货车?若追不上,小车与货车相距的最近距离为多少? ②若要保证小车追上货车,则货车的加速度应满足什么条件?