如图所示,在半径为R的圆形匀强磁场,磁感应强度为B,方向垂直于圆平面向里,PQ为磁场圆的一直径。比荷相同不计重力的负离子a和b以相同速率,由P点在纸平面内分别与PQ夹和沿PQ射入磁场中发生偏转后,又飞出磁场,则下列说法正确的是( )
A.离子射出磁场时动能一定相等 |
B.离子射出磁场时速度一定不同 |
C.如果离子a从Q点射出磁场,则离子b在磁场中的运动半径为R |
D.如果离子b射出磁场时偏转角为900, 则离子a和b在磁场中的运动时间比为4:3 |
如图所示为圆柱形区域的横截面,在没有磁场的情况下,带电粒子(不计重力)以某一初速度沿截面直径方向入射,穿过此区域的时间为t,在该区域加沿轴线方向的匀强磁场,磁感应强度为B,带电粒子仍以同一初速度沿截面直径入射,粒子飞出此区域时,速度方向偏转60°角,如图所示,根据上述条件可求下列物理量中的( )
A.带电粒子的比荷 |
B.带电粒子在磁场中运动的周期 |
C.带电粒子在磁场中运动的半径 |
D.带电粒子的初速度 |
如图a、b、c为三个完全相同的带正电荷的油滴,在真空中从相同高度由静止下落到同一水平面,a下落中有水平匀强电场,b下落中有水平向里的匀强磁场,三油滴落地时间设为ta、tb、tc,落地时速度分别va、vb、vc,则( )
A.ta=tb=tc,va=vb=vc | B.ta=tb=tc,va>vb=vc |
C.tb>ta=tc,va=vb=vc | D.tb>ta=tc,va>vc=vb |
如图所示,左右边界分别为PP′、QQ′的匀强磁场的宽度为d,磁感应强度大小为B,方向垂直纸面向里。一个质量为m、电荷量大小为q的微观粒子,沿与左边界PP′成θ=45°方向以速度v0垂直射入磁场。不计粒子重力,欲使粒子不从边界QQ′射出,v0的最大值可能是
A. | B. |
C. | D. |
如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:
(1)粒子在磁场中的轨道半径r1
(2)两板间电压的最大值Um;
(3)粒子在磁场中运动的最长时间tm。
真空区域有宽度为L、磁感应强度为B的匀强磁场,磁场方向如图所示,MN、PQ是磁场的边界.质量为m、电荷量为+q的粒子沿着与MN夹角为θ=60°的方向垂直射入磁场中,粒子不能从PQ边界射出磁场(不计粒子重力的影响),求:
(1)粒子射入磁场的速度大小范围.
(2)若粒子刚好不能从PQ边飞出时在磁场中运动的时间.
带电粒子的质量 m=1.7×10-27kg,电荷量 q=1.6×10-19C,以速度 v =3.2×106m/s 沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B=0.17 T,磁场的宽度L=10 cm,如图所示。不计重力,求:
(1)带电粒子离开磁场时的偏转角θ多大?
(2)带电粒子在磁场中运动多长时间?
如下图所示,在空间有一直角坐标系xOy,直线OP与x轴正方向的夹角为30°,第一象限内有两个方向都垂直纸面向外的匀强磁场区域Ⅰ和Ⅱ,直线OP是它们的理想边界,OP上方区域Ⅰ中磁场的磁感应强度为B。一质量为m、电荷量为q的质子(不计重力,不计质子对磁场的影响)以速度v从O点沿与OP成30°角的方向垂直磁场进入区域Ⅰ,质子先后通过磁场区域Ⅰ和Ⅱ后,恰好垂直打在x轴上的Q点(图中未画出)。试求:
(1)区域Ⅱ中磁场的磁感应强度大小;
(2)Q点到O点的距离。
如图所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直,一质量为m,电荷量为-q(q>0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场,粒子在磁场中的运动轨迹y轴交与M点,已知,。不计重力,求:
(1)M点与坐标原点O间的距;
(2)粒子从P点运动到M点所用的时间。
一电子经加速电场加速后,垂直射入一匀强磁场区域,如图所示,电子从磁场边界射出时的偏角随加速电压U和磁感应强度的变化关系为
A.U增大时增大 | B.U增大时减小 | C.B增大时增大 | D.B增大时减小 |
如图所示,第二、三象限存在足够大的匀强电场,电场强度为E,方向平行于纸面向上,一个质量为m,电量为q的正粒子,在x轴上M点(-4r,0)处以某一水平速度释放,粒子经过y轴上N点(0,2r)进入第一象限,第一象限存在一个足够大的匀强磁场,其磁感应强度B=2,方向垂直于纸面向外,第四象限存在另一个足够大的匀强磁场,其磁感应强度B=2,方向垂直于纸面向里,不计粒子重力,r为坐标轴每个小格的标度,试求:
(1)粒子初速度v0;
(2)粒子第1次穿过x轴时的速度大小和方向;
(3)画出粒子在磁场中运动轨迹并求出粒子第n次穿过x轴时的位置坐标。
如图所示,一个质量为m、电量为+q的带电粒子从A孔以初速度v0垂直于AD进入磁感应强度为B的匀强磁场中,并恰好从C孔垂直于OC射入匀强电场中,电场方向跟OC平行,OC⊥AD,最后打在D点,且。若已知m,q,v0,B,不计重力,试求:
(1)粒子由A运动到D点所需时间;
(2)粒子抵达D点时的动能.
如图甲所示,粒子源能连续释放质量为m,电荷量为+q,初速度近似为零的粒子(不计重力),粒子从正极板附近射出,经两金属板间电场加速后,沿y轴射入一个边界为矩形的匀强磁场中,磁感应强度为B,磁场方向垂直纸面向里.磁场的四条边界分别是y =0,y=a,x=-1.5a,x=1.5a.两金属板间电压随时间均匀增加,如图乙所示.由于两金属板间距很小,微粒在电场中运动时间极短,可认为微粒加速运动过程中电场恒定.
(1)求微粒分别从磁场上、下边界射出时对应的电压范围;
(2)微粒从磁场左侧边界射出时,求微粒的射出速度相对进入磁场时初速度偏转角度的范围,并确定在左边界上出射范围的宽度d .
一带电粒子,沿垂直于磁场的方向射入匀强磁场,粒子的一段径迹如图所示,径迹上的每一小段都可近似看成圆弧,由于带电粒子使沿途空气电离,粒子的动能逐渐减小(带电荷量保持不变),由图可以确定( )
A.粒子从a到b,带正电 | B.粒子从b到a,带正电 |
C.粒子从a到b,带负电 | D.粒子从b到a,带负电 |