如图所示,在xoy平面第一象限里有竖直向下的匀强电场,电场强度为E。第二象限里有垂直于纸面向外的匀强磁场,磁感应强度为B。在x轴上-a处,质量为m、电荷量为e的质子以大小不同的速度射入磁场,射入时速度与x轴负方向夹角为。不计空气阻力,重力加速度为g。求:
(1)在-x轴上有质子到达的坐标范围;
(2)垂直于y轴进入电场的质子,在电场中运动的时间;
(3)在磁场中经过圆心角为2的一段圆弧后进入电场的质子,到达x轴的动能。
如图,静止于A处的正离子,经电压为U的加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左。静电分析器通道内有均匀辐向分布的电场,已知圆弧所在处场强为E0,方向如图所示;离子质量为m、电荷量为q;、,离子重力不计。
(1)求圆弧虚线对应的半径R的大小;
(2)若离子恰好能打在NQ的中点上,求矩形区域QNCD内匀强电场场强E的值;
(3)若撤去矩形区域QNCD的匀强电场,换为垂直纸面向里的磁场,要求离子能最终打在QN上,求磁场磁感应强度B的取值范围
如下图所示,在xoy坐标系的原点O处有一点状的放射源,它向xoy平面内的x轴上方各个方向发射α粒子,α粒子的速度大小均为v0,在0<y<d的区域内分布有指向y轴正向的匀强电场,场强大小,其中q、m分别为α粒子的电量和质量;在d<y<2d的区域内分布有垂直于xoy平面向里的匀强磁场,MN为电场和磁场的边界.AB为一块很大的平面感光板垂直于xoy平面且平行于x轴,放置于y=2d处.观察发现此时恰好无粒子打到AB板上.(q、d、m、v0均为已知量,不考虑α粒子的重力及粒子间的相互作用).求:
(1)α粒子通过电场和磁场边界MN时的速度大小及此时距y轴的最大距离.
(2)磁感应强度B的大小.
(3)将AB板至少向下平移多少距离,才能使所有粒子均能打到AB板上?此时AB板上被α粒子打中的区域长度是多少?
如图所示,竖直放置的平行金属板A、B中间开有小孔,小孔的连线沿水平放置的平行金属板C、D的中轴线,某时刻粒子源P发出一质量为m、电荷量为q的带正电的粒子(初速度不计),粒子在A、B间被加速后,进入金属板C、D之间.A、B间的电压UAB =Uo,C、D间的电压UCD=2Uo/3,金属板C、D长度为L,间距d=L/3.在金属板C、D右侧有一个环形带磁场,其圆心与金属板C、D的中心O点重合,内圆半径R1=L/3,磁感应强度的大小B0 =,磁感应强度的方向垂直于纸面向内,磁场内圆边界紧靠金属板C、D右端,粒子只在纸面内的运动,粒子的重力不计.
(1)求粒子离开偏转电场时在竖直方向上偏移的距离;
(2)若粒子不能从环形带磁场的右侧穿出,求环形带磁场的最小宽度.
(3)在环形带磁场最小宽度时,求粒子在磁场中运动的时间
如图所示,竖直平面内的光滑倾斜轨道AB、水平轨道CD与半径r=0.5m的光滑圆弧轨道分别相切于B、C点,AB与水平面的夹角为37°,过B点垂直于纸面的竖直平面左侧有匀强磁场,磁感应强度B=1T、方向垂直于纸面向里;过C点垂直于纸面的竖直平面右侧有电场强度E=1×104N/C、方向水平向右的匀强电场(图中未画出)。现将小物块P从倾斜轨道上A点由静止释放沿AB向下运动,运动过程中电荷量保持不变,不计空气阻力。已知物块P的质量m=0.5kg、电荷量q=+2.5×10-4C,P与水平轨道间的动摩擦因数为0.2,A、B两点间距离x=1m,取g=10m/s2,sin37°=0.6,cos37°=0.8。求:
⑴P下滑到B点的速度;
⑵P运动到C点时对圆轨道的压力;
⑶P与水平面间因摩擦而产生的热量。
如图甲,真空中竖直放置两块相距为d的平行金属板P、Q,两板间加上如图乙最大值为U0的周期性变化的电压,在Q板右侧某个区域内存在磁感应强度大小为B、方向垂直于纸面向里的有界匀强磁场.在紧靠P板处有一粒子源A,自t=0开始连续释放初速不计的粒子,经一段时间从Q板小孔O射入磁场,然后射出磁场,射出时所有粒子的速度方向均竖直向上.已知电场变化周期T=,粒子质量为m,电荷量为+q,不计粒子重力及相互间的作用力。求:
(1)t=0时刻释放的粒子在P、Q间运动的时间;
(2)粒子射入磁场时的最大速率和最小速率;
(3)有界磁场区域的最小面积。
如图所示,以直角三角形AOC为边界的有界匀强磁场区域,磁感应强度为B,A.=60, AO=L,在O点放置一个粒子源,可以向各个方向发射某种带负电粒子。已知粒子的比荷为,发射速度大小都为。设粒子发射方向与OC边的夹角为,不计粒子间相互作用及重力。对于粒子进入磁场后的运动,下列说法正确的是
A.当=45时,粒子将从AC边射出
B.所有从OA边射出的粒子在磁场中运动时间相等
C.随着角的增大,粒子在磁场中运动的时间先变大后变小
D.在AC边界上只有一半区域有粒子射出
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一质量为m、电荷量为e的电子从a点以初速度v0平行于x轴正方向射入磁场,并从x轴上的b点射出磁场,此时速度的方向与x轴正方向的夹角为60°。下列说法正确的是
A.电子在磁场中运动的半径为L |
B.电子在磁场中运动的时间为2πL/3v0 |
C.磁场的磁感应强度为mv0/eL |
D.电子在磁场中做圆周运动的速度不变 |
在如图所示的同心圆环形区域内有垂直于圆环面的匀强磁场,磁场的方向如图,两同心圆的半径分别为R0、2R0。将一个质量为m(不计重力),电荷量为+q的粒子通过一个电压为U的电场加速后从P点沿内圆的切线进入环形磁场区域。欲使粒子始终在磁场中运动,求匀强磁场的磁感应强度大小的范围。
如图所示,在x>0、y>0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向里,大小为B.现有一质量为m、电量为q的带正电粒子,从在x轴上的某点P沿着与x轴成30°角的方向射入磁场。不计重力影响,则下列说法中正确的是( )
A.粒子在磁场中运动所经历的时间可能为
B.粒子在磁场中运动所经历的时间可能为
C.粒子在磁场中运动所经历的时间可能为
D.粒子一定不能通过坐标原点
如图所示,条形区域Ⅰ和Ⅱ内分别存在方向垂直于纸面向外和向里的匀强磁场,磁感应强度B的大小均为0.3T,AA′、BB′、CC′、DD′为磁场边界,它们相互平行,条形区域的长度足够长,磁场宽度及BB′、CC′之间的距离d=1m。一束带正电的某种粒子从AA′上的O点以沿与AA′成60°角、大小不同的速度射入磁场,当粒子的速度小于某一值v0时,粒子在区域Ⅰ内的运动时间均为t0=4×10-6s;当粒子速度为v1时,刚好垂直边界BB′射出区域Ⅰ。取π≈3,不计粒子所受重力。 求:
(1)粒子的比荷q/m;
(2)速度v0和v1的大小;
(3)速度为v1的粒子从O到DD′所用的时间。
如图所示,以直角三角形AOC 为边界的有界匀强磁场区域,磁感应强度为B,∠A=60°,AO= a。在O 点放置一个粒子源,可以向各个方向发射某种带负电粒子,粒子的比荷为,发射速度大小都为v0,且满足,发射方向由图中的角度θ表示。对于粒子进入磁场后的运动(不计重力作用),下列说法正确的是
A.粒子在磁场中运动最长时间为 |
B.粒子在磁场中运动最短时间为 |
C.在AC边界上只有一半区域有粒子射出 |
D.在三角形AOC边界上,有粒子射出的边界线总长为2a |
如图所示,半径为的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为,速度大小为。则粒子在磁场中运动的最长时间为
A. | B. | C. | D. |
在直角坐标系xoy中,有一半径为R的圆形磁场区域,磁感强度为B,磁场方向垂直于xoy平面指向纸面外,该区域的圆心坐标为(0,R),P1 P2分别为加速电场的正负两极板,P2中央有一小孔,两极板平行于都x轴正对放置,如图所示。有一个质量为m电量为q的负离子,由静止经电场加速后从点(,0)沿y轴正向射入第I象限,不计重力的影响。
(1)若离子从射入到射出磁场通过了该磁场的最大距离,试求离子在磁场区域经历的时间t1和加速电场的加速电压U1
(2)若离子在磁场区域经历的时间,求加速电场的加速电压U2.