如图所示,一个有界的匀强磁场,磁感应强度B=0.50T,磁场方向垂直于纸面向里,MN是磁场的左边界.在距磁场左边界MN的1.0m处有一个放射源A,内装放射物质(镭),发生α衰变生成新核Rn(氡).放在MN左侧的粒子接收器接收到垂直于边界MN方向射出的α粒子,此时接收器位置距直线OA的距离为1m.
(1)写出Ra的衰变方程;
(2)求衰变后Rn(氡)的速率(质子、中子的质量为1.6×10-27kg,电子电量e=1.6×10-19C).
如图(a)所示,在以为圆心,内外半径分别为和的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差为常量,,,一电荷量为,质量为的粒子从内圆上的点进入该区域,不计重力。
⑴已知粒子从外圆上以速度射出,求粒子在点的初速度的大小。
⑵若撤去电场,如图(b),已知粒子从延长线与外圆的交点以速度射出,方向与延长线成角,求磁感应强度的大小及粒子在磁场中运动的时间。
⑶在图(b)中,若粒子从A点进入磁场,速度大小为,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?
扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆。其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为,磁场方向相反且垂直纸面。一质量为、电量为、重力不计的粒子,从靠近平行板电容器板处由静止释放,极板间电压为,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角
(1)当Ⅰ区宽度、磁感应强度大小时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为,求及粒子在Ⅰ区运动的时间
(2)若Ⅱ区宽度磁感应强度大小,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差(3)若、,为使粒子能返回Ⅰ区,求应满足的条件
(4)若,且已保证了粒子能从Ⅱ区右边界射出。为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B1、B2、L1、、L2、之间应满足的关系式。
如图所示,倾斜挡板NM上有一个小孔K,NM与水平挡板NP成60°角,K与N间的距离。现有质量为m,电荷量为q的正电粒子组成的粒子束,垂直于倾斜挡板NM,以速度v0不断射入,不计粒子所受的重力。
(1)若在NM和NP两档板所夹的区域内存在一个垂直于纸面向外的匀强磁场,NM和NP为磁场边界。粒子恰能垂直打在水平挡板NP上,求匀强磁场的磁感应强度的大小。
(2)若在NM和NP两档板所夹的区域内,只在某一部分区域存在一与(1)中大小相等方向相反的匀强磁场。从小孔K飞入的这些粒子经过磁场偏转后也能垂直打到水平挡板NP上(之前与挡板没有碰撞),求粒子在该磁场中运动的时间。
(3)若在(2)问中,磁感应强度大小未知,从小孔K飞入的这些粒子经过磁场偏转后能垂直打到水平挡板NP上(之前与挡板没有碰撞),求该磁场的磁感应强度的最小值。
如图所示,两平行金属板A、B长度l=0.8m,间距d=0.6m.直流电源E能给两极板提供的电压足够大,位于极板左侧中央的粒子源可以沿水平方向向右连续发射比荷为=l×107C/kg、重力不计的带电粒子,射入板间的粒子速度均为v0=4×106m/s.在极板右侧有一个垂直纸面向里的匀强磁场,磁感应强度B=lT,分布在环带区域中,该环带的内外圆的圆心与两板间的中心重合于O点,环带的内圆半径Rl= m.将变阻器滑动头由a向b慢慢滑动(图中未标出两极板所连的外电路),改变两板间的电压时,带电粒子均能从不同位置穿出极板射向右侧磁场.
(1)问从板间右侧射出的粒子速度的最大值vm是多少?
(2)若粒子射出电场时,速度的反向延长线与v0所在直线交于O/点,试证明O/点与极板右端边缘的水平距离x=,即O/与O重合,所有粒子都好像从两板的中心射出一样.
(3)为使粒子不从磁场右侧穿出,求环带磁场的最小宽度d.
如图所示的空间分为I、Ⅱ两个区域,边界AD与边界AC的夹角为300,边界AC与MN平行,I、Ⅱ区域均存在磁感应强度大小为B的匀强磁场,磁场的方向分别为垂直纸面向外和垂直纸面向里,Ⅱ区域宽度为d,边界AD上的P点与A点间距离为2d.一质量为m、电荷量为+q的粒子以速度v=2Bqd/m,
沿纸面与边界AD成600的图示方向从左边进入I区域磁场(粒子的重力可忽略不计).
(1)若粒子从P点进入磁场,从边界MN飞出磁场,求粒子经过两磁场区域的时间.
(2)粒子从距A点多远处进入磁场时,在Ⅱ区域运动时间最短?
(3)若粒子从P点进入磁场时,在整个空间加一垂直纸面向里的匀强电场,场强大小为E,当粒子经过边界AC时撤去电场,则该粒子在穿过两磁场区域的过程中沿垂直纸面方向移动的距离为多少?
磁谱仪是测量α能谱的重要仪器。磁谱仪的工作原理如图所示,放射源S发出质量为m、电量为q的α粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2φ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上。(重力影响不计)
⑴若能量在E~E+ΔE(ΔE>0,且)范围内的α粒子均垂直于限束光栏的方向进入磁场。试求这些α粒子打在胶片上的范围Δx1。
⑵实际上,限束光栏有一定的宽度,α粒子将在2φ角内进入磁场。试求能量均为E的α 粒子打到感光胶片上的范围Δx2
如题图所示,在半径为a的圆柱空间中(图中圆为其横截面)充满磁感应强度大小为B的均匀磁场,其方向平行于轴线远离读者.在圆柱空间中垂直轴线平面内固定放置一绝缘材料制成的边长为L=1.6a的刚性等边三角形框架ΔDEF,其中心O位于圆柱的轴线上.DE边上S点()处有一发射带电粒子的源,发射粒子的方向皆在图题图中截面内且垂直于DE边向下。发射粒子的电量皆为q(>0),质量皆为m,但速度v有各种不同的数值。若这些粒子与三角形框架的碰撞无能量损失,电量也无变化,且每一次碰撞时速度方向均垂直于被碰的边。试问:
(1)带电粒子经多长时间第一次与DE边相碰?
(2)带电粒子速度v的大小取哪些数值时可使S点发出的粒子最终又回到S点?
(3)这些粒子中,回到S点所用的最短时间是多少?
如图,在区域内存在与平面垂直的匀强磁场,磁感应强度的大小为.在时刻,一位于坐标原点的粒子源在平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与轴正方向的夹角分布在范围内。已知沿y轴正方向发射的粒子在时刻刚好从磁场边界上点离开磁场。求:
⑴ 粒子在磁场中做圆周运动的半径及粒子的比荷;
⑵ 此时刻仍在磁场中的粒子的初速度方向与轴正方向夹角的取值范围;
⑶ 从粒子发射到全部粒子离开磁场所用的时间。
如图所示,在正三角形区域内存在着垂直于纸面的匀强磁场和平行于AB的水平方向的匀强电场,一不计重力的带电粒子刚好以某一初速度从三角形O点沿角分线OC做匀速直线运动。若此区域只存在电场时,该粒子仍以此初速度从O点沿角分线OC射入,则此粒子刚好从A点射出;若只存在磁场时,该粒子仍以此初速度从O点沿角分线OC射入,则下列说法正确的是:
A.粒子将在磁场中做匀速圆周运动,运动轨道半径等于三角形的边长 |
B.粒子将在磁场中做匀速圆周运动,且从OB阶段射出磁场 |
C.粒子将在磁场中做匀速圆周运动,且从BC阶段射出磁场 |
D.根据已知条件可以求出该粒子分别在只有电场时和只有磁场时在该区域中运动的时间之比 |
用磁聚焦法测比荷的装置如图所示.在真空玻璃管中装有热阴极K和带有小孔的阳极A.在A、K之间加上电压U后,不断地有电子从阴极K由静止加速到达阳极A,并从小孔射出.接着电子进入平行板电容器C,电容器两极板间加有不大的交变电场,使不同时刻通过的电子发生不同程度的偏转;电容器C和荧光屏S之间加一水平向右的均匀磁场,电容器和荧光屏间的距离为L,电子经过磁场后打在荧光屏上,将磁场的磁感应强度从零开始缓慢增大到为B时,荧光屏上的光点的锐度最大(这时荧光屏S上的亮斑最小).
(1)若平行板电容器C的板长为,求电子经过电容器和磁场区域的时间之比;
(2)用U、B、L表示出电子的比荷;
(3)在磁场区域再加一匀强电场,其电场强度的大小为,方向与磁场方向相反,若保持U、L和磁场方向不变,调节磁场的磁感应强度大小,仍使电子在荧光屏上聚焦,则磁感应强度大小满足的条件是什么?
大型强子对撞机是研究高能粒子的重要工具,同种物质的正反粒子由静止开始经电压为U的直线加速器加速后,沿切线方向进入对撞机的真空环状空腔内,空腔内存在与圆环平面垂直的匀强磁场,磁感应强度为B,两种粒子在环形空腔内沿相反方向作半径为r的匀速圆周运动,进而实现碰撞。下列说法正确的是
A.对于给定的加速电压,带电粒子的比荷越大,磁感应强度B越大 |
B.对于给定的加速电压,带电粒子的比荷越大,磁感应强度B越小 |
C.对于给定的带电粒子,加速电压U越大,粒子运动的周期越大 |
D.对于给定的带电粒子,不管加速电压U多大,粒子运动的周期都不变 |
如图甲所示,在空心三棱柱CDF以外足够大的空间中,充满着磁感应强度为B的匀强磁场。三棱柱的轴线与磁场平行,截面边长为L,三棱柱用绝缘薄板材料制成,其内部有平行于CD侧面的金属板P、Q,两金属板间的距离为d,P板带正电,Q板带负电,Q板中心有一小孔,P板上与小孔正对的位置有一个粒子源S,从S处可以发出初速度为0、带电量为+q、质量为m的粒子,这些粒子与三棱柱侧面碰撞时无能量损失。试求:
(1)为使从S点发出的粒子最终又回到S点,P、Q之间的电压U应满足什么条件?(Q与CD之间距离不计)
(2)粒子从S点出发又回到S点的最短时间是多少?
(3)若磁场是半径为a的圆柱形区域,如图乙所示,圆柱的轴线与三棱柱的轴线重合,且a=(+)L,要使S点发出的粒子最终又回到S点,则P、Q之间的电压不能超过多少?
如图所示. 半径分别为a、b的两同心虚线圆所围区域分别存在电场和磁场,中心O处固定一个半径很小(可忽略不计)的金属球,在小圆空间内存在沿水平的径向辐向电场。小圆周与金属球间电势差为U,两圆之间存在垂直于纸面向里的匀强磁场,设有一个带负电的粒子从金属球表面沿x轴正方向以很小的初速度逸出,粒子质量为m,电荷量为q.(不计粒子的重力,忽略粒子逸出的初速度)求:
(1)粒子到达小圆周上时的速度为多大?
(2)粒子以(1)中的速度进入两圆间的磁场中,当磁感应强超过某一临界值时,粒子将不能到达大圆周,求此磁感应强度的最小值B.
(3)若磁感应强度取(2)中最小值,且,要使粒子恰好第一次沿逸出方向的反方向回到原出发点,粒子需经过多少次回旋?并求粒子在磁场中运动的时间.(设粒子与金属球正碰后电量不变且能以原速率原路返回)
21.(19分)
图为“双聚焦分析器”质谱仪的结构示意图,其中,加速电场的电压为U,静电分析器中与圆心01等距离的各点场强大小相等、方向沿径向,磁分析器中以02为圆心、圆心角为90o的扇形区域内,分布着方向垂直于纸面的匀强磁场,其左边界与静电分析器的右端面平行。由离子源发出的一质量为m、电荷量为g的正离子(初速度为零,重力不计)经加速电场加速后,从M点垂直于电场方向进入静电分析器,沿半径为R的四分之一圆弧轨迹做匀速圆周运动,从N点射出,接着由P点垂直磁分析器的左边界射入,最后垂直于下边界从Q点射出并进入收集器。已知Q点与圆心02的距离为d。求:
(1)磁分析器中磁场的磁感应强度B的大小和方向;
(2)静电分析器中离子运动轨迹处电场强度E的大小;
(3)现将离子换成质量为0.9m、电荷量仍为g的另一种正离子,其它条件不变。试直接指出该离子进入磁分析器时的位置,它射出磁场的位置在Q点的左侧还是右侧?