如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板和,两极板中心各有一小孔、,两极板间电压的变化规律如图乙所示,正反向电压的大小均为,周期为。在时刻将一个质量为、电量为的粒子由静止释放,粒子在电场力的作用下向右运动,在时刻通过垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外的电场)
(1)求粒子到达时的速度大小和极板距离
(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件。
(3)若已保证了粒子未与极板相撞,为使粒子在时刻再次到达,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感强度的大小
如右图a所示,间距为d的平行金属板MN与一对光滑的平行导轨相连,平行导轨间距L=d/2,一根导体棒ab以一定的初速度向右匀速运动,棒的右端存在一个垂直纸面向里,大小为B的匀强磁场。棒进入磁场的同时,粒子源P释放一个初速度为0的带电粒子,已知带电粒子质量为m,电量为q.粒子能从N板加速到M板,并从M板上的一个小孔穿出。在板的上方,有一个环形区域内存在大小也为B,垂直纸面向外的匀强磁场。已知外圆半径为2d, 里圆半径为d. 两圆的圆心与小孔重合(粒子重力不计)
(1)判断带电粒子的正负,并求当ab棒的速度为vo时,粒子到达M板的速度v;
(2)若要求粒子不能从外圆边界飞出,则v0的取值范围是多少?
(3) 若棒ab的速度v0只能是,则为使粒子不从外圆飞出,则可以控制导轨区域磁场的宽度S(如图b所示),那该磁场宽度S应控制在多少范围内
在如图所示的空间里,存在垂直纸面向里的匀强磁场,磁感应强度为.在竖直方向存在交替变化的匀强电场如图(竖直向上为正),电场大小为.一倾角为θ足够长的光滑绝缘斜面放置在此空间.斜面上有一质量为m,带电量为-q的小球,从t=0时刻由静止开始沿斜面下滑,设第5秒内小球不会离开斜面,重力加速度为g
求:(1)求第1秒末小球的速度大小.
(2)第6秒内小球离开斜面的最大距离.
(3)若第19秒内小球仍未离开斜面,θ角应满足什么条件?
如图所示,在空间中存在垂直纸面向里的场强为B匀强磁场,其边界AB、CD的宽度为d,在左边界的Q点处有一质量为m,带电量为负q的粒子沿与左边界成30o的方向射入磁场,粒子重力不计.求:
(1)带电粒子能从AB边界飞出的最大速度?
(2)若带电粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示的匀强电场中减速至零且不碰到负极板,则极板间电压及整个过程中粒子在磁场中运动的时间?
(3)若带电粒子的速度是(2)中的倍,并可以从Q点沿纸面各个方向射入磁场,则粒子能打到CD边界的范围?
如图所示. 半径分别为a 、b的两同心虚线圆所围空间分别存在电场和磁场,中心O处固定一个半径很小(可忽略不计)的金属球,在小圆空间内存在沿半径向内的辐向电场,小圆周与金属球间电势差U,两圆之间存在垂直于纸面向里的匀强磁场,设有一个带负电的粒子从金属球表面沿x轴正方向以很小的初速度逸出,粒子质量为m,电荷量为q.(不计粒子的重力,忽略粒子逸出的初速度)
试求:(1)粒子到达小圆周上时的速度为多大?
(2)粒子以(1)中的速度进入两圆间的磁场中,当磁感应强超过某一临界值时,粒子将不能到达大圆周,求此磁感应强度的最小值B.
(3)若当磁感应强度取(2)中最小值,且时,粒子运动一段时间后恰好能沿x轴负方向回到原出发点,求粒子从逸出到第一次回到原出发点的过程中,在磁场中运动的时间.(设粒子与金属球正碰后电量不变且能以原速率原路返回)
如图所示,和为平行的虚线,上方和 下方都是垂直纸面向里的磁感应强度相同的匀强磁场,两点都在上,带电粒子从点以初速与成斜向上射出,经过偏转后正好过点,经过点时速度方向也斜向上,不计粒子重力。下列说法中正确的是( )
A.粒子一定带正电荷 |
B.粒子一定带负电荷 |
C.若将带电粒子在点时的初速度变大(方向不变),它仍能经过点 |
D.若将带电粒子在点时的初速度变小(方向不变),它不能经过点 |
核聚变反应需几百万度高温,为把高温条件下高速运动的离子约束在小范围内,通常采用磁约束的方法(托卡马克装置)。如图是磁约束装置的截面示意图,环状匀强磁场围成一个中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边界。设环状磁场的内半径R1=0.6m、外半径R2="1.2m" ,磁场的磁感应强度B=0.4T,磁场方向如图。 已知被约束的氦核的荷质比q/m=4.8×107C/kg ,中空区域内的氦核具有各个方向的速度。不计带电粒子的重力。试计算
(1)氦核沿环形截面的半径方向从A点射入磁场,而不能穿出外边界,氦核的最大速度是多少?
(2)所有氦核都不能穿出磁场外边界,氦核的最大速度是多少?
如图所示,圆形匀强磁场半径R="l" cm,磁感应强度B=IT,方向垂直纸面向里,其上方有一对水平放置的平行金属板M、N,间距d=1cm,N板中央开有小孔S。小孔位于圆心O的正上方,S与0的连线交磁场边界于A.两金属板通过导线与匝数为100匝的矩形线圈相连(为表示线圈的绕向,图中只画了2匝),线圈内有垂直纸面向里且均匀增加的磁场,穿过线圈的磁通量变化率为△Φ/△t=100Wb/s。位于磁场边界上某点(图中未画出)的离子源P,在纸面内向磁场区域发射速度大小均为v=5×105m/s,方向各不相同的带正电离子,离子的比荷q/m=5×107C/kg,已知从磁场边界A点射出的离子恰好沿直线AS进入M、N间的电场.(不计离子重力;离子碰到极板将被吸附)求:
(1)M、N之间场强的大小和方向;
(2)离子源P到A点的距离;
(3)沿直线AS进入M、N间电场的离子在磁场中运动的总时间(计算时取π=3).
(18分)如图所示,光滑的绝缘平台水平固定,在平台右下方有相互平行的两条边界MN与PQ,其竖直距离为h=1.7m,两边界间存在匀强电场和磁感应强度为B=0.9T且方向垂直纸面向外的匀强磁场,MN过平台右端并与水平方向呈θ=37°.在平台左端放一个可视为质点的A球,其质量为mA=0.17kg,电量为q=+0.1C,现给A球不同的水平速度,使其飞出平台后恰好能做匀速圆周运动.g取10m/s2.
(1)求电场强度的大小和方向;
(2)要使A球在MNPQ区域内的运动时间保持不变,则A球的速度应满足的条件?(A球飞出MNPQ区域后不再返回)
(3)在平台右端再放一个可视为质点且不带电的绝缘B球,A球以vA0=3m/s的速度水平向右运动,与B球碰后两球均能垂直PQ边界飞出,则B球的质量为多少?
如图所示,M、N为加速电场的两极板,M板中心有一小孔Q,其正上方有一半径为R1=1m的圆形磁场区域,圆心为0,另有一内半径为R1 ,外半径为m的同心环形磁场区域,区域边界与M板相切于Q点,磁感应强度大小均为B=0.5T,方向相反,均垂直于纸面。一比荷C/kg带正电粒子从N板的P点由静止释放,经加速后通过小孔Q,垂直进入环形磁场区域。已知点P、Q、O在同一竖直线上,不计粒子的重力,且不考虑粒子的相对论效应。
(1) 若加速电压V,求粒子刚进入环形磁场时的速率v0
(2)要使粒子能进入中间的圆形磁场区域,加速电压U2应满足什么条件?
(3) 在某加速电压下粒子进入圆形磁场区域,恰能水平通过圆心O,之后返回到出发点P,求粒子从Q孔进人磁场到第一次回到Q点所用的时间。
如图所示,在xoy平面内第二象限的某区域存在一个矩形匀强磁场区,磁场方向垂直xoy平面向里,边界分别平利于x轴和y轴。一电荷量为e、质量为m的电子,从坐标原点为O以速度v0射入第二象限,速度方向与y轴正方向成45°角,经过磁场偏转后,通过P(0,a)点,速度方向垂直于y轴,不计电子的重力。
(1)若磁场的磁感应强度大小为B0,求电子在磁场中运动的时间t;
(2)为使电子完成上述运动,求磁感应强度的大小应满足的条件;
(3)若电子到达y轴上P点时,撤去矩形匀强磁场,同时在y轴右侧加方向垂直xoy平面向里的匀强磁场,磁感应强度大小为B1,在y轴左侧加方向垂直xoy平面向里的匀强电场,电子在第(k+1)次从左向右经过y轴(经过P点为第1次)时恰好通过坐标原点。求y轴左侧磁场磁感应强度大小B2及上述过程电子的运动时间t。
如图所示,两块平行金属极板MN水平放置,板长L =" 1" m.间距d = m,两金属板间电压UMN = 1×104 V;在平行金属板右侧依次存在ABC和FGH两个全等的正三角形区域,正三角形ABC内存在垂直纸面向里的匀强磁场B1,三角形的上顶点A与上金属板M平齐,BC边与金属板平行,AB边的中点P恰好在下金属板N的右端点;正三角形FGH内存在垂直纸面向外的匀强磁场B2,已知A、F、G处于同一直线上.B、C、H也处于同一直线上.AF两点距离为m。现从平行金属极板MN左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m = 3×10-10 kg,带电量q = +1×10-4 C,初速度v0 = 1×105 m/s。
(1)求带电粒子从电场中射出时的速度v的大小和方向
(2)若带电粒子进入中间三角形区域后垂直打在AC边上,求该区域的磁感应强度B1
(3)若要使带电粒子由FH边界进入FGH区域并能再次回到FH界面,求B2应满足的条件。
(浙江省2012年2月四校联考)如图所示,边长为L的等边三角形ABC为两有界匀强磁场的理想边界,三角形内的磁场方向垂直纸面向外,磁感应强度大小为B,三角形外的磁场(足够大)方向垂直纸面向里,磁感应强度大小也为B。把粒子源放在顶点A处,它将沿∠A的角平分线发射质量为m、电荷量为q、初速度为v0的带电粒子(粒子重力不计)。若从A射出的粒子
①带负电,v0=,第一次到达C点所用时间为t1
②带负电,v0=,第一次到达C点所用时间为t2
③带正电,v0=,第一次到达C点所用时间为t3
④带正电,v0=,第一次到达C点所用时间为t4
A. | B. |
C. | D. |
如图甲所示,两平行金属板长度l不超过0.2 m,两板间电压U随时间t变化的图象如图乙所示。在金属板右侧有一左边界为MN、右边无界的匀强磁场,磁感应强度B =0.01 T,方向垂直纸面向里。现有带正电的粒子连续不断地以速度v0=105m/s射入电场中,初速度方向沿两板间的中线OO’方向。磁场边界MN与中线OO’垂直。已知带电粒子的比荷q/m=108C/kg,粒子的重力和粒子之间的相互作用力均可忽略不计。
(1) 在每个粒子通过电场区域的时间内,可以把板间的电场强度看作是恒定的。请通过计算说明这种处理能够成立的理由;
(2)设t=0.1 s时刻射人电场的带电粒子恰能从金属板边缘穿越电场射入磁场,求该带电粒子射出电场时速度的大小;
(3) 对于所有经过电场射入磁场的带电粒子,设其射人磁场的入射点和从磁场射出的出射点间的距离为d,试判断d的大小是否随时间变化?若不变,证明你的结论;若变化,求出d的变化范围。
在真空室内取坐标系xOy,在x轴上方存在二个方向都垂直于纸面向外的磁场区Ⅰ和Ⅱ(如图),平行于x轴的虚线MM’和NN’是它们的边界线,两个区域在y方向上的宽度都为d、在x方向上都足够长.Ⅰ区和Ⅱ区内分别充满磁感应强度为B和的匀强磁场.一带正电的粒子质量为m、电荷量为q,从坐标原点O以大小为v的速度沿y轴正方向射入Ⅰ区的磁场中.不计粒子的重力作用.
(1)如果粒子只是在Ⅰ区内运动而没有到达Ⅱ区,那么粒子的速度v满足什么条件?粒子运动了多长时间到达x轴?
(2)如果粒子运动过程经过Ⅱ区而且最后还是从x轴离开磁场,那么粒子的速度v又满足什么条件?并求这种情况下粒子到达x轴的坐标范围?