一转动装置如图甲所示,两根足够长轻杆OA、OB固定在竖直轻质转轴上的O点,两轻杆与转轴间夹角均为30°,小球a、b分别套在两杆上,小环c套在转轴上,球与环质量均为m,c与a、b间均用长为L的细线相连,原长为L的轻质弹簧套在转轴上,且与轴上P点、环c相连。当装置以某一转速转动时,弹簧伸长到,环c静止在O处,此时弹簧弹力等于环的重力,球、环间的细线刚好拉直而无张力。弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g。求:
(1)细线刚好拉直而无张力时,装置转动的角速度ω1
(2)如图乙所示,该装置以角速度ω2(未知)匀速转动时,弹簧长为L/2,求此时杆对小球的弹力大小;
(3)该装置转动的角速度由ω1缓慢变化到ω2,求该过程外界对转动装置做的功。
半径为R的绝缘光滑圆环固定在竖直平面内,环上套有一质量为m、带正电的珠子,空间存在水平向右的匀强电场,如图所示.珠子所受静电力是其重力的3/4倍,将珠子从环上最低位置A点由静止释放,求:
(1)珠子所能获得的最大动能是多少?
(2)珠子对圆环的最大压力是多少?
如图所示,光滑半圆弧轨道半径为r,OA为水平半径,BC为竖直直径。一质量为m 的小物块自A处以某一竖直向下的初速度滑下,进入与C点相切的粗糙水平滑道CM上。在水平滑道上有一轻弹簧,其一端固定在竖直墙上,另一端恰位于滑道的末端C点(此时弹簧处于自然状态)。若物块运动过程中弹簧最大弹性势能为Ep,且物块被弹簧反弹后恰能通过B点。已知物块与水平滑道间的动摩擦因数为μ,重力加速度为g,求:
(1)物块被弹簧反弹后恰能通过B点时的速度大小;
(2)物块离开弹簧刚进入半圆轨道c点时对轨道的压力FN的大小;
(3)物块从A处开始下滑时的初速度大小v0。
如图所示,一小球从A点以某一水平向右的初速度出发,沿水平直线轨道运动到B点后,进入半径R=0.1m的光滑竖直圆形轨道,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续向C点运动,C点右侧有一壕沟,C、D两点的竖直高度h=0.8m,水平距离s=1.2m,水平轨道AB长为L1=1m,BC长为L2=3m,小球与水平轨道间的动摩擦因数μ =0.2,重力加速度g=10m/s2,求:
(1)若小球恰能通过圆形轨道的最高点,求小球在A点的初速度?
(2)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球在A点的初速度的范围是多少?
如图所示,空间存在着场强为E=2.5×102 N/C、方向竖直向上的匀强电场,在电场内一长为L=0.5 m的绝缘细线,一端固定在O点,另一端拴着质量为m=0.5 kg、电荷量为q=4×10-2 C的小球.现将细线拉直到水平位置,使小球由静止释放,当小球运动到最高点时细线受到的拉力恰好达到它能承受的最大值而断裂.取g=10 m/s2.求:
(1)小球的电性;
(2)细线能承受的最大拉力;
(3)当细线断裂后,小球继续运动到与O点水平方向距离为L时(仍在匀强电场中),小球距O点的高度.
如图所示,在光滑水平面上放着一个质量M=0.3kg的木块(可视为质点),在木块正上方1m处有一个固定悬定点O,在悬点O和木块之间用一根长2m、不可伸长的轻绳连接。有一颗质量m=0.1kg的子弹以80m/s的速度水平射入木块并留在其中,之后木块绕O点在竖直平面内做圆周运动。求:
①木块以多大速度脱离水平地面?
②当木块到达最高点时对轻绳的拉力F为多少?
如图所示,一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线的夹角θ=30°,一条长为l的绳,一端固定在圆锥体的顶点O,另一端系一个质量为m的小球(视作质点),小球以速率v绕圆锥体的轴线做水平匀速圆周运动,则
(1)当v1=时,绳对小球的拉力多大?
(2)当v2=时,绳对小球的拉力多大?
(10分)如图所示,在竖直平面的xoy坐标系内,一根长为l的不可伸长的细绳,一端固定在拉力传感器A上,另一端系一质量为m的小球.x轴上的P点固定一个表面光滑的小钉,P点与传感器A相距.现拉小球使细绳绷直并处在水平位置,然后由静止释放小球,当细绳碰到钉子后,小球可以绕钉子在竖直平面内做圆周运动.已知重力加速度大小为g,求:
(1)若小球经过最低点时拉力传感器的示数为7mg,求此时小球的速度大小;
(2)传感器A与坐标原点O之间的距离;
(3)若小球经过最低点时绳子恰好断开,请确定小球经过y轴的位置.
如图所示,光滑斜面AB与光滑竖直圆弧轨道BCD在B点平滑连接,质量为m的小物块从斜面上A点由静止释放并滑下,经圆弧轨道最低点C后能沿轨道通过最高点D,此时对D点的压力恰好等于其重力。重力加速度为g,不计空气阻力。求:
(1)物块运动到最低点C时对轨道的压力大小;
(2)A、C的高度差h与圆弧轨道半径R的比值。
一长L的细绳固定在O点,O点离地面的高大于L,另一端系一质量为m的小球.开始时线与水平方向夹角为30°,如图(甲)所示.当小球由静止释放后,小球运动到最低点时,对绳的拉力多大?
如图所示,绳长L=0.5m,能承担最大拉力为100N,一端固定在O点,另一端挂一质量为m=0.2kg的小球,悬点O到地面高H=5.5m,若小球至最低点绳刚好断.求小球落地点.
如图所示,竖直平面内的半圆形轨道下端与水平面相切,B、C分别为半圆形轨道的最低点和最高点。小滑块(可视为质点)沿水平面向左滑动,经过A点时的速度,恰好通过最高点C.已知半圆形轨道光滑,半径R=0.40m,滑块与水平面间的动摩擦因数m =0.50,A、B两点间的距离L=1.30m。取重力加速度g=10m/s2。求:
(1)滑块运动到A点时速度的大小
(2)滑块从C点水平飞出后,落地点与B点间的距离x。
如图所示,QB段为一半径为的光滑圆弧轨道,AQ段为一长度为的粗糙水平轨道,两轨道相切于Q点,Q在圆心O的正下方,整个轨道位于同一竖直平面内。物块的质量为m=1kg(可视为质点),P与AQ间的动摩擦因数,若物块以速度v0从A点滑上水平轨道,到C点后又返回A点时恰好静止。(取)求:
(1)v0的大小;
(2)物块P第一次刚通过Q点时对圆弧轨道的压力。
如图所示,一个人用一根长1m,只能承受46N拉力的绳子,拴着一个质量为1㎏的小球,在竖直平面内作圆周运动,已知圆心O离地面h=6m。转动中小球在最底点时绳子断了,
(1)绳子断时小球运动的角速度多大?
(2)绳断后,小球落地点与抛出点间的水平距离。
如图所示,圆心角为90°的光滑圆弧形轨道,半径R为1.6 m,其底端切线沿水平方向。长为的斜面,倾角为,其顶端与弧形轨道末端相接,斜面正中间有一竖直放置的直杆,现让质量为1 kg的物块从弧形轨道的顶端由静止开始滑下,物块离开弧形轨道后刚好能从直杆的顶端通过,重力加速度g取10 m/s2,求:
(1)物块滑到弧形轨道底端时对轨道的压力大小;
(2)直杆的长度为多大。