如图所示,在水平天花板下用a、b两绝缘细线悬挂质量m=0.04 g,带电量q=+1.0×10-4 C的小球,a线竖直,b线刚好伸直,a线长l1=20 cm,b线长l2=40 cm,小球处于静止状态。整个装置处于范围足够大、方向水平且垂直纸面向里的匀强磁场中,磁感应强度B=2.0 T,不计空气阻力,重力加速度g取10 m/s2,试求∶
(1)图示位置a、b线中的张力Ta、Tb的大小;
(2)现将a线烧断,且小球摆到最低点时b线恰好断裂,求此后2 s内小球的位移x的大小。
如图所示,在同一竖直平面内,一轻质弹簧一端固定,静止斜靠在光滑斜面上,另一自由端恰好与水平线AB齐平,一长为L的轻质细线一端固定在O点,另一端系一质量为的小球,O点到AB的距离为2L.现将细线拉至水平,小球从位置C由静止释放,到达O点正下方时,细线刚好被拉断.当小球运动到A点时恰好能沿斜面方向压缩弹簧,不计碰撞时的机械能损失,弹簧的最大压缩量为 (在弹性限度内),求:
(1)细线所能承受的最大拉力F;
(2)斜面的倾角;
(3)弹簧所获得的最大弹性势能.
如图所示,水平轨道AB与竖直轨道CD用一光滑的半径R=0.5m的圆弧BC平滑连接,现有一物块从竖直轨道上的Q点由静止开始释放,已知QC间的长度R=0.5m,物块的质量m=0.2kg,物块与AB和CD轨道间的动摩擦因数均为μ=0.5,重力加速度g取10 m/s2,求;
(1)物块下滑到水平面后,距离B点的最远距离s为多少?
(2)若整个空间存在一水平向右的匀强电场,电场强度E=1.0×106V/m,并使物块带电,带电量为q=+2.0×10-6C,所有接触面均绝缘,现使带电物块从水平面上的P点由静止开始释放(P点未在图中标出),要想使物块刚好能通过Q点,PB间的长度L为多少?
(3)在符合第二问的基础上,物块到达圆弧上C点时,对轨道的压力大小?
如图所示,半径R=0.4 m的光滑圆弧轨道BC固定在竖直平面内,轨道的上端点B和圆心O的连线与水平方向的夹角θ=30°,下端点C为轨道的最低点且与粗糙水平面相切,一根轻质弹簧的右端固定在竖直挡板上。质量m=0.1 kg的小物块(可视为质点)从空中A点以v0=2 m/s的速度被水平抛出,恰好从B点沿轨道切线方向进入轨道,经过C点后沿水平面向右运动至D点时,弹簧被压缩至最短,C、D两点间的水平距离L=1.2m,小物块与水平面间的动摩擦因数μ=0.5,g取10 m/s2。求:
(1)小物块经过圆弧轨道上B点时速度vB的大小;
(2)小物块经过圆弧轨道上C点时对轨道的压力大小;
(3)弹簧的弹性势能的最大值Epm。
(19分)如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量、电量的可视为质点的带电小球与弹簧接触但不栓接。某一瞬间释放弹簧弹出小球,小球从水平台右端A点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B点,并沿轨道滑下。已知AB的竖直高度,倾斜轨道与水平方向夹角为、倾斜轨道长为,带电小球与倾斜轨道的动摩擦因数。倾斜轨道通过光滑水平轨道CD与光滑竖直圆轨道相连,在C点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变。只有过山车模型的竖直圆轨道处在范围足够大竖直向下的匀强电场中,场强。(cos37°=0.8,sin37°=0.6,取g=10m/s2)求:
(1)被释放前弹簧的弹性势能?
(2)要使小球不离开轨道(水平轨道足够长),竖直圆弧轨道的半径应该满足什么条件?
(3)如果竖直圆弧轨道的半径,小球进入轨道后可以有多少次通过竖直圆轨道上距水平轨道高为0.01m的某一点P?
如图所示,一光滑平直轨道上A、B两点处各有一个小球m1和m2,m1=2kg,m2=1kg,平直轨道末端C点处刚好与一光滑的圆弧管道平滑相连,D为圆弧管道的顶点,圆弧半径R=2.5m,两小球半径均为r,r略小于管道半径,且r<<R。其中A点与C点的距离L="12" m.现让m2从B点以v0的速度向前运动并进入圆弧管道,当m2经过圆弧管道的顶部D点时对圆弧轨道的压力恰好为零,与此同时,m1受到一个水平拉力F的作用从静止开始运动,经过一段时间后恰与落下的m2相撞(g取10 m/s2),求:
(1)m2在B点出发时的速度v0的大小;
(2)水平拉力F的大小
摩天大楼中一部直通高层的客运电梯,行程超过百米。电梯的简化模型如1所示。考虑安全、舒适、省时等因索,电梯的加速度a是随时间t变化的。已知电梯在t = 0时由静止开始上升,a - t图像如图2所示。电梯总质最m = 2.0×103 kg。忽略一切阻力,重力加速度g取10m/s2。
(1)求电梯在上升过程中受到的最大拉力F1和最小拉力F2;
(2)类比是一种常用的研究方法。对于直线运动,教科书中讲解了由v - t图像求位移的方法。请你借鉴此方法,对比加速度的和速度的定义,根据图2所示a - t图像,求电梯在第1s内的速度改变量△v1和第2s末的速率v2;
(3)求电梯以最大速率上升时,拉力做功的功率p:再求在0~11s时间内,拉力和重力对电梯所做的总功W。
如图所示,质量为m=1kg的可视为质点的小物块轻轻放在水平匀速运动的传送带上的P点,随传送带运动到A点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B点进入竖直光滑圆弧轨道下滑,圆弧轨道与质量为M=2kg的足够长的小车左端在最低点O点相切,并在O点滑上小车,水平地面光滑,当物块运动到障碍物Q处时与Q发生无机械能损失的碰撞。碰撞前物块和小车已经相对静止,而小车可继续向右运动(物块始终在小车上),小车运动过程中和圆弧无相互作用。已知圆弧半径R=1.0m,圆弧对应的圆心角θ为53°,A点距水平面的高度h=0.8m,物块与小车间的动摩擦因数为μ=0.1,重力加速度g=10m/s2,sin53°=0.8,cos53°=0.6。试求:
(1)小物块离开A点的水平初速度v1;
(2)小物块经过O点时对轨道的压力;
(3)第一次碰撞后直至静止,物块相对小车的位移和小车做匀减速运动的总时间。
如图所示,在同一竖直平面内,一轻质弹簧一端固定,静止斜靠在光滑斜面上,另一自由端恰好与水平线齐平,一长为的轻质细线一端固定在点,另一端系一质量为的小球,点到的距离为.现将细线拉至水平,小球从位置由静止释放,到达点正下方时,细线刚好被拉断.当小球运动到点时恰好能沿斜面方向压缩弹簧,不计碰撞时的机械能损失,弹簧的最大压缩量为(在弹性限度内),求:
(1)细线所能承受的最大拉力;
(2)斜面的倾角;
(3)弹簧所获得的最大弹性势能.
如图所示,滑块质量为m,与水平地面间的动摩擦因数为0.1,它以v0=3 的初速度由A点开始向B点滑行,AB=5R,并滑上光滑的半径为R的1/4圆弧BC,在C点正上方有一离C点高度也为R的旋转平台,沿平台直径方向开有两个离轴心距离相等的小孔P、Q,孔径大于滑块的大小,旋转时两孔均能达到C点的正上方.求:(1)滑块运动到光滑轨道B点时对轨道的压力;(2)若滑块滑过C点后穿过P孔,求滑块过P点后还能上升的最大高度;(3)若滑块滑过C点后从P孔上升又恰能从Q孔落下,平台转动的角速度ω应满足什么条件?
如图所示,在E=103V/m的竖直匀强电场中,有一光滑的半圆形绝缘轨道QPN与一水平绝缘轨道MN连接,半圆形轨道平面与电场线平行,P为QN圆弧的中点,其半径R=40cm,一带正电q=10-4C的小滑块质量m=10g,与水平轨道间的动摩擦因数μ=0.15,位于N点右侧1.5m处,取g=10m/s2,求:
(1)要使小滑块恰能运动到圆轨道的最高点Q,则滑块应以多大的初速度v0?
(2)这样运动的滑块通过P点时对轨道的压力是多大?
如图是一个货物运输装置示意图,BC是平台,AB是长L=12m的传送带,BA两端的高度差h=2.4m。传送带在电动机M的带动下顺时针匀速转动,安全运行的最大速度为vm=6m/s。假设断电后,电动机和传送带都立即停止运动。现把一个质量为20kg的货物,轻轻放上传送带上的A点,然后被传送带运输到平台BC上,货物与传送带之间的动摩擦因数为0.4。由于传送带较为平坦,可把货物对传送带的总压力的大小近似等于货物的重力;由于轮轴的摩擦,电动机输出的机械功率将损失20%,取g=10m/s2。求:
(1)要使该货物能到达BC平台,电动机需工作的最短时间;
(2)要把货物尽快地运送到BC平台,电动机的输出功率至少多大?
(3)如果电动机接在输出电压为120V的恒压电源上,电动机的内阻r=6Ω,在把货物最快地运送到BC平台的过程中,电动机消耗的电能共有多少?
(12分)如图所示,一质量为m=1 kg的小物块轻轻放在水平匀速运动的传送带上的A点,随传送带运动到B点,小物块从C点沿圆弧切线进入竖直光滑的半圆轨道恰能做圆周运动,已知圆弧半径R=0.9 m,轨道最低点为D,D点距水平面的高度h=0.8 m.小物块离开D点后恰好垂直碰击放在水平面上E点的固定倾斜挡板,已知小物块与传送带间的动摩擦因数μ=0.3,传送带以5 m/s恒定速率顺时针转动,g=10 m/s2.求:
(1)传送带AB两端的距离;
(2)小物块经过D点时对轨道的压力的大小;
(3)倾斜挡板与水平面间的夹角θ的正切值.
如图所示,光滑绝缘的圆形轨道BCDG位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为mg,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g.求:
(1)若滑块从水平轨道上距离B点为s=3R的A点由静止释放,求滑块到达与圆心O等高的C点时的速度大小;
(2)在(1)的情况下,求滑块到达C点时对轨道的作用力大小;
(3)改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小.
如图所示是某次四驱车比赛的轨道某一段。小明控制的四驱车(可视为质点),质量m=1.0kg,额定功率为P=7W。小明的四驱车到达水平平台上A点时速度很小(可视为0),此时启动四驱车的发动机并直接使发动机的功率达到额定功率,一段时间后关闭发动机。当四驱车由平台边缘点飞出后,恰能沿竖直光滑圆弧轨道CDE上C点的切线方向飞入圆形轨道。已知AB间的距离L=6m,BF间高度差h=0.8m,圆轨道的半径R=1m,∠COD=53°,四驱车在AB段运动时的阻力恒为1N。重力加速度g取10m/s2,不计空气阻力。sin53°=0.8,cos53°=0.6,求:
(1)求四驱车到达C点时的速度大小;
(2)发动机在水平平台上工作的时间;
(3)四驱车第一次经过D点时对轨道的压力大小。