如图所示,让小球从一半径为R=2m的光滑圆弧轨道中的C位置由静止释放,运动到最低点D后,进入粗糙的水平面上由D点向右做匀减速运动,到达小孔A进入半径r=0.3m的竖直放置的光滑圆环轨道,当小球进入圆轨道立即关闭A孔。已知两轨道与水平面平滑连接,,小球质量为m=0.5kg,D点与小孔A的水平距离s=2m,g取10m/s2。试求:
(1)小球在D点对轨道的压力大小
(2)要使小球能进入圆轨道并且不脱离轨道,求粗糙水平面摩擦因数μ的范围。
水平面上有电阻不计的U形导轨NMPQ,它们之间的宽度为L,M和P之间接入电动势为E的电源(不计内阻).现垂直于导轨搁一根质量为m,电阻为R的金属棒ab,并加一个范围较大的匀强磁场,磁感应强度大小为B,方向与水平面夹角为θ且指向右斜上方,如右图所示,问:
(1)当ab棒静止时,受到的支持力和摩擦力各为多少?
(2)若B的大小和方向均能改变,则要使ab棒所受支持力为零,B的大小至少为多少?此时B的方向如何?
(16分)如图所示,斜面始终静止在地面上,物体A质量为2kg,为使A在斜面上静止,已知物体与斜面间动摩擦因数为0.4,最大静摩擦力等于滑动摩擦力, g=10m/s2。
(1)物体B质量的最大值和最小值是多少?
(2)对应于B质量最大和最小两种情况下地面对斜面的摩擦力分别多大?[提示:sin370=0.6,cos370=0.8
如图所示,一个质量为M的人,站在台秤上,一长为R的悬线一端系一个质量为m的小球,手拿悬线另一端,小球绕悬线另一端点在竖直平面内做圆周运动,不计空气阻力,重力加速度为g,求:
(1)若小球恰能通过圆轨道最高点,求小球通过最低点时对绳子拉力的大小。
(2)若小球恰能在竖直平面内做圆周运动,求台秤示数的最小值。
如图所示,水平光滑轨道AB与竖直半圆形光滑轨道在B点平滑连接,AB段长x=10m,半圆形轨道半径R=2.5m。质量m=0.10kg的小滑块(可视为质点)在水平恒力F作用下,从A点由静止开始运动,经B点时撤去力F,小滑块进入半圆形轨道,沿轨道运动到最高点C,从C点水平飞出。重力加速度g取10m/s2。若小滑块从C点水平飞出后又恰好落在A点。试分析求解:
(1)滑块通过C点时的速度大小;
(2)滑块刚进入半圆形轨道时,在B点对轨道的压力大小;
(3)水平力F 的大小。
如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴重合,转台以一定角速度
匀速旋转,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与
之间的夹角
为60°。已知重力加速度大小为
,小物块与陶罐之间的最大静摩擦力大小为
。
(1)若小物块受到的摩擦力恰好为零,求此时的角速度;
(2)若小物块一直相对陶罐静止,求陶罐旋转的角速度的取值范围。
为测量小铜块与瓷砖表面间的动摩擦因数,一同学将贴有标尺的瓷砖的一端放在水平桌面上,形成一倾角为 α的斜面(已知sin α=0.34,cos α=0.94),小铜块可在斜面上加速下滑,如图所示。该同学用手机拍摄小铜块的下滑过程,然后解析视频记录的图像,获得5个连续相等时间间隔(每个时间间隔Δ T=0.20 s)内小铜块沿斜面下滑的距离 s i( i=1,2,3,4,5),如下表所示。
s 1 |
s 2 |
s 3 |
s 4 |
s 5 |
5.87cn |
7.58cm |
9.31cm |
11.02cm |
12.74cm |
由表中数据可得,小铜块沿斜面下滑的加速度大小为_______m/s 2,小铜块与瓷砖表面间的动摩擦因数为_________。(结果均保留2位有效数字,重力加速度大小取9.80 m/s 2)
如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ.重力加速度为g.
(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;
(2)要使纸板相对砝码运动,求所需拉力的大小;
(3)本实验中,m1=0.5kg,m2=0.1kg,μ=0.2,砝码与纸板左端的距离d=0.1m,取g=10m/s2.若砝码移动的距离超过l=0.002m,人眼就能感知.为确保实验成功,纸板所需的拉力至少多大?
如图所示,水平轨道MN与竖直光滑半圆轨道相切于N点,轻弹簧左端固定在轨道的M点,将一质量为m=1kg的小物块靠在弹簧右端并压缩至O点,此时弹簧储有弹性势能Ep,现将小物块无初速释放,小物块恰能通过轨道最高点B,此后水平飞出再落回到水平面。已知ON的距离L=3.0m,小物块与水平轨道间的动摩擦因数μ=0.2,圆轨道半径R=0.4m,g取10 m/s2。求:
(1)小物块通过B点抛出后,落地点距N的水平距离x;
(2)弹簧储有的弹性势能Ep。
如图所示,质量为M=50kg的人通过光滑的定滑轮让质量为m=10kg的重物从静止开始向上做匀加速运动,并在2s内将重物提升了4m.若绳与竖直方向夹角为θ=370,求:(sin37°=0.6,cos37°=0.8,g=10m/s2)
(1)物体上升的加速度多大?
(2)人对绳子的拉力为多大?
(3)地面对人的摩擦力和人对地面的压力分别多大?
如图所示,重力为G1=8N的砝码悬挂在绳PA和PB的结点上,PA偏离竖直方向37°角,PB沿水平方向且连在重力为G2=100N的木块上,木块静止于倾角为37°的斜面上,试求:
(1)PA、PB绳上的拉力分别为多大?
(2)木块与斜面间的摩擦力;
(3)木块所受斜面的弹力.
如图,质量为M=5kg的斜劈形物体放在水平地面上,质量为m=1kg的物块以某大小为10m/s的初速度沿斜劈的粗糙斜面向上滑动,至速度为零后返回,这一过程中斜劈始终保持静止。已知斜劈的斜面倾角为37º,物体与斜劈的动动摩擦因数为μ=0.5,重力加速度g=10m/s2。试求:
(1)物体从开始上滑到到最高点所用时间。
(2)物体沿斜劈下滑的过程中,斜劈对地面的压力大小。
(3)物体沿斜劈上滑的过程中,地面施加给斜劈的静摩擦力大小和方向。
如图所示,光滑的水平面AB与半径R=0.4m的光滑竖直半圆轨道BCD在B点相切,D点为半圆轨道最高点,A点的右侧连接一粗糙的水平面。用细线连接甲、乙两物体,中问夹一轻质压缩弹簧,弹簧与甲、乙两物体不拴接,甲的质量朋=4kg,乙的质量
=5kg,甲、乙均静止。若固定乙,烧断细线,甲离开弹簧后经过B点进入半圆轨道,过D点时对轨道的压力恰好为零。取g=10m/s2,甲、乙两物体均可看作质点,求:
(1)甲离开弹簧后经过B点时的速度的大小;
(2)在弹簧压缩量相同的情况下,若固定甲,烧断细线,乙物体离开弹簧后从A点进入动摩擦因数=0.4的粗糙水平面,则乙物体在粗糙水平面运动的位移S。
如图所示,P是倾角为30°的光滑固定斜面.劲度为k的轻弹簧一端同定在斜面底端的固定挡板C上,另一端与质量为m的物块A相连接.细绳的一端系在物体A上,细绳跨过不计质量和摩擦的定滑轮,另一端有一个不计质量的小挂钩.小挂钩不挂任何物体时,物体A处于静止状态,细绳与斜面平行.在小挂钩上轻轻挂上一个质量也为m的物块B后,物体A沿斜面向上运动.斜面足够长,运动过程中B始终未接触地面.
(1)求物块A刚开始运动时的加速度大小a;
(2)设物块A沿斜面上升通过Q点位置时速度最大,求Q点到出发点的距离x0及最大速度vm;
(3)把物块B的质量变为Nm(N>0.5),小明同学认为,只要N足够大,就可以使物块A沿斜面上滑到Q点时的速度增大到2vm,你认为是否正确?如果正确,请说明理由,如果不正确,请求出A沿斜面上升到Q点位置时的速度的范围.
如图所示,用一个平行于斜面向上的恒力将质量m=10.0kg的箱子从斜坡底端由静止推上斜坡,斜坡与水平面的夹角θ=37°,推力的大小F=100N,斜坡长度s=4.8m,木箱底面与斜坡的动摩擦因数μ=0.20。重力加速度g取10m/s2,且已知sin37°=0.60,cos37°=0.80。
求:(1)物体到斜面顶端所用时间;
(2)到顶端时推力的瞬时功率多大。