如图所示,光滑水平面AB与竖直面内的半圆形导轨在B点平滑相接,导轨半径为R.一个质量为m的物体将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,脱离弹簧后当它经过B点进入导轨瞬间对导轨的压力为其重力的9倍,之后向上运动完成半个圆周运动恰好到达C点.已知重力加速度为g.试求:
(1)弹簧开始时的弹性势能;
(2)物体从B点运动至C点克服阻力做的功;
(3)物体离开C点后落回水平面时速度的大小.
如图所示,质量为M=0.6kg的物体静止在水平圆形转台上。轻绳的一端系着物体,穿过转台圆心的光滑小孔吊着质量为m=0.3kg的物体,M与小孔的距离为r=0.2m,M与水平面间的动摩擦因数为0.3,现使物体M随转台绕过圆心的竖直轴匀速转动,(g取10m/s2)求:
(1)角速度ω为多大时,物体M与平台之间恰好没有摩擦力?
(2)角速度ω=6rad/s时,物体M受到的摩擦力的大小和方向?
如图所示,单摆摆长为1m,做简谐运动,C点在悬点O的正下方,D点与C相距为2m,C、D之间是光滑水平面,当 小摆球A从右侧最大位移处无初速度释放时,小球B从D点以某一速度匀速地向C点运动,A、B两球在C点迎面相遇,求小球B的速度大小.(π2=g)
在许多建筑工地经常使用打夯机将桩料打入泥土中以加固地基。打夯前先将桩料扶起、使其缓慢直立进入泥土中,每次卷扬机都通过滑轮用轻质钢丝绳将夯锤提升到距离桩顶h0=5 m处再释放,让夯锤自由下落,夯锤砸在桩料上并不弹起,而随桩料一起向下运动。(碰撞时间极短时,一动碰一静,碰后同速满足mv=(M+m)v共)设夯锤和桩料的质量均为m=500 kg,泥土对桩料的阻力为f=kh,其中常数k=2. 0×104 N/m,h是桩料深入泥土的深度。卷扬机使用电动机来驱动,卷扬机和电动机总的工作效率为η=95%,每次卷扬机需用20 s的时间提升夯锤。提升夯锤时忽略加速和减速的过程,不计夯锤提升时的动能,也不计滑轮的摩擦。夯锤和桩料的作用时间极短,g取10m/s2,求:
(1)在提升夯锤的过程中,电动机的输入功率;(结果保留2位有效数字)
(2)打完第一夯后,桩料进入泥土的深度。(可用根号表示)
卫星绕地球做匀速圆周运动时处于完全失重状态,物体对支持面几乎没有压力,所以在这种环境中已无法用天平称量物体的质量.假设某同学在这种环境设计了如图所示装置(图中O为光滑的小孔)来间接测量物体的质量:给待测物体一个初速度,使它在桌面上做匀速圆周运动.设航天器中具有基本测量工具.
(1)物体与桌面间的摩擦力可以忽略不计,原因是 ;
(2)实验时需要测量的物理量是 ;
(3)待测物体质量的表达式为m= 。
如图,质量为m的b球用长h的细绳悬挂于水平轨道BC的出口C处。质量也为m的小球a,从距BC高h的A处由静止释放,沿ABC光滑轨道滑下,在C处与b球正碰并与b粘在一起。已知BC轨道距地面有一定的高度,悬挂b球的细绳能承受的最大拉力为2.8mg。试问:
①a与b球碰前瞬间的速度多大?
②a、b两球碰后,细绳是否会断裂?(要求通过计算回答)
如图所示,已知半径分别为R和r的甲、乙两个光滑的圆形轨道安置在同一竖直平面内,甲轨道左侧又连接一个光滑的轨道,两圆形轨道之间由一条水平轨道CD相连.一小球自某一高度由静止滑下,先滑过甲轨道,通过动摩擦因数为μ的CD段,又滑过乙轨道,最后离开.若小球在两圆轨道的最高点对轨道压力都恰好为零.试求:
⑴释放小球的高度h.
⑵水平CD段的长度.
为测量小铜块与瓷砖表面间的动摩擦因数,一同学将贴有标尺的瓷砖的一端放在水平桌面上,形成一倾角为 α的斜面(已知sin α=0.34,cos α=0.94),小铜块可在斜面上加速下滑,如图所示。该同学用手机拍摄小铜块的下滑过程,然后解析视频记录的图像,获得5个连续相等时间间隔(每个时间间隔Δ T=0.20 s)内小铜块沿斜面下滑的距离 s i( i=1,2,3,4,5),如下表所示。
s 1 |
s 2 |
s 3 |
s 4 |
s 5 |
5.87cn |
7.58cm |
9.31cm |
11.02cm |
12.74cm |
由表中数据可得,小铜块沿斜面下滑的加速度大小为_______m/s 2,小铜块与瓷砖表面间的动摩擦因数为_________。(结果均保留2位有效数字,重力加速度大小取9.80 m/s 2)
如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ.重力加速度为g.
(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;
(2)要使纸板相对砝码运动,求所需拉力的大小;
(3)本实验中,m1=0.5kg,m2=0.1kg,μ=0.2,砝码与纸板左端的距离d=0.1m,取g=10m/s2.若砝码移动的距离超过l=0.002m,人眼就能感知.为确保实验成功,纸板所需的拉力至少多大?
如图所示,水平轨道MN与竖直光滑半圆轨道相切于N点,轻弹簧左端固定在轨道的M点,将一质量为m=1kg的小物块靠在弹簧右端并压缩至O点,此时弹簧储有弹性势能Ep,现将小物块无初速释放,小物块恰能通过轨道最高点B,此后水平飞出再落回到水平面。已知ON的距离L=3.0m,小物块与水平轨道间的动摩擦因数μ=0.2,圆轨道半径R=0.4m,g取10 m/s2。求:
(1)小物块通过B点抛出后,落地点距N的水平距离x;
(2)弹簧储有的弹性势能Ep。
如图所示,质量为M=50kg的人通过光滑的定滑轮让质量为m=10kg的重物从静止开始向上做匀加速运动,并在2s内将重物提升了4m.若绳与竖直方向夹角为θ=370,求:(sin37°=0.6,cos37°=0.8,g=10m/s2)
(1)物体上升的加速度多大?
(2)人对绳子的拉力为多大?
(3)地面对人的摩擦力和人对地面的压力分别多大?
如图所示,重力为G1=8N的砝码悬挂在绳PA和PB的结点上,PA偏离竖直方向37°角,PB沿水平方向且连在重力为G2=100N的木块上,木块静止于倾角为37°的斜面上,试求:
(1)PA、PB绳上的拉力分别为多大?
(2)木块与斜面间的摩擦力;
(3)木块所受斜面的弹力.
如图,质量为M=5kg的斜劈形物体放在水平地面上,质量为m=1kg的物块以某大小为10m/s的初速度沿斜劈的粗糙斜面向上滑动,至速度为零后返回,这一过程中斜劈始终保持静止。已知斜劈的斜面倾角为37º,物体与斜劈的动动摩擦因数为μ=0.5,重力加速度g=10m/s2。试求:
(1)物体从开始上滑到到最高点所用时间。
(2)物体沿斜劈下滑的过程中,斜劈对地面的压力大小。
(3)物体沿斜劈上滑的过程中,地面施加给斜劈的静摩擦力大小和方向。
如图所示,光滑的水平面AB与半径R=0.4m的光滑竖直半圆轨道BCD在B点相切,D点为半圆轨道最高点,A点的右侧连接一粗糙的水平面。用细线连接甲、乙两物体,中问夹一轻质压缩弹簧,弹簧与甲、乙两物体不拴接,甲的质量朋=4kg,乙的质量=5kg,甲、乙均静止。若固定乙,烧断细线,甲离开弹簧后经过B点进入半圆轨道,过D点时对轨道的压力恰好为零。取g=10m/s2,甲、乙两物体均可看作质点,求:
(1)甲离开弹簧后经过B点时的速度的大小;
(2)在弹簧压缩量相同的情况下,若固定甲,烧断细线,乙物体离开弹簧后从A点进入动摩擦因数=0.4的粗糙水平面,则乙物体在粗糙水平面运动的位移S。
如图所示,P是倾角为30°的光滑固定斜面.劲度为k的轻弹簧一端同定在斜面底端的固定挡板C上,另一端与质量为m的物块A相连接.细绳的一端系在物体A上,细绳跨过不计质量和摩擦的定滑轮,另一端有一个不计质量的小挂钩.小挂钩不挂任何物体时,物体A处于静止状态,细绳与斜面平行.在小挂钩上轻轻挂上一个质量也为m的物块B后,物体A沿斜面向上运动.斜面足够长,运动过程中B始终未接触地面.
(1)求物块A刚开始运动时的加速度大小a;
(2)设物块A沿斜面上升通过Q点位置时速度最大,求Q点到出发点的距离x0及最大速度vm;
(3)把物块B的质量变为Nm(N>0.5),小明同学认为,只要N足够大,就可以使物块A沿斜面上滑到Q点时的速度增大到2vm,你认为是否正确?如果正确,请说明理由,如果不正确,请求出A沿斜面上升到Q点位置时的速度的范围.