如图,质量为m的b球用长h的细绳悬挂于水平轨道BC的出口C处。质量也为m的小球a,从距BC高h的A处由静止释放,沿ABC光滑轨道滑下,在C处与b球正碰并与b粘在一起。已知BC轨道距地面有一定的高度,悬挂b球的细绳能承受的最大拉力为2.8mg。试问:①a与b球碰前瞬间的速度多大?②a、b两球碰后,细绳是否会断裂?(要求通过计算回答)
一水平传送带以v1=2m/s的速度匀速运动,将一粉笔头无初速度放在传送带上,达到相对静止时产生的划痕长L1=4m。现在让传送带以a2=1.5m/s2的加速度减速,在刚开始减速时将该粉笔头无初速度放在传送带上,(取g=10m/s2)求:(1)粉笔头与传送带之间的动摩擦因数μ=?(2)粉笔头与传送带都停止运动后,粉笔头离其传输带上释放点的距离L2。
如图所示,粗糙弧形轨道和两个光滑半圆轨道组成翘尾巴的S形轨道.光滑半圆轨道半径为R,两个光滑半圆轨道连接处CD之间留有很小空隙,刚好能够使小球通过,CD之间距离可忽略.粗糙弧形轨道最高点A与水平面上B点之间的高度为h.从A点静止释放一个可视为质点的小球,小球沿翘尾巴的S形轨道运动后从E点水平飞出,落到水平地面上,落点到与E点在同一竖直线上B点的距离为s.已知小球质量m,不计空气阻力,求:(1)小球从E点水平飞出时的速度大小;(2)小球运动到半圆轨道的B点时对轨道的压力;(3)小球沿翘尾巴S形轨道运动时克服摩擦力做的功.
宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t小球落回原地.(取地球表面重力加速度g=10 m/s2,阻力不计)(1)求该星球表面附近的重力加速度g′;(2)已知该星球的半径与地球半径之比为R星∶R地=1∶4,求该星球的质量与地球质量之比M星∶M地.
如图所示,物体A的质量为M=1 kg,静止在光滑水平面上的平板车B的质量为m=0.5 kg、长为L=1 m.某时刻物体A以v0=4 m/s向右的初速度滑上平板车B的上表面,在A滑上B的同时,给B施加一个水平向右的拉力.忽略物体A的大小,已知A与B之间的动摩擦因数为μ=0.2,取重力加速度g=10 m/s2.试求:如果要使A不至于从B上滑落,拉力F应满足的条件.
如图所示,质量为m=0.1 kg可视为质点的小球从静止开始沿半径为R1=35 cm的圆弧轨道AB由A点滑到B点后,进入与AB圆滑连接的1/4圆弧管道BC.管道出口处为C,圆弧管道半径为R2=15 cm,在紧靠出口C处,有一水平放置且绕其水平轴线匀速旋转的圆筒(不计筒皮厚度),筒上开有小孔D,筒旋转时,小孔D恰好能经过出口C处,若小球射出C出口时,恰好能接着穿过D孔,并且还能再从D孔向上穿出圆筒,小球到最高点后返回又先后两次向下穿过D孔而未发生碰撞,不计摩擦和空气阻力,g取10 m/s2,问:(1)小球到达B点的瞬间前后对轨道的压力分别为多大?(2)小球到达C点的速度多大?(3)圆筒转动的最大周期T为多少?