如图所示是某次四驱车比赛的轨道某一段.张华控制的四驱车(可视为质点),质量 m=1.0kg,额定功率为P=7W.张华的四驱车到达水平平台上A点时速度很小(可视为0),此时启动四驱车的发动机并直接使发动机的功率达到额定功率,一段时间后关闭发动机.当四驱车由平台边缘B点飞出后,恰能沿竖直光滑圆弧轨道CDE上C点的切线方向飞入圆形轨道,且此时的速度大小为5m/s,∠COD=53°,并从轨道边缘E点竖直向上飞出,离开E以后上升的最大高度为h=0.85m.已知AB间的距离L=6m,四驱车在AB段运动时的阻力恒为1N.重力加速度g取10m/s2,不计空气阻力.sin53°=0.8,cos53°=0.6,求:
(1)四驱车运动到B点时的速度大小;
(2)发动机在水平平台上工作的时间;
(3)四驱车对圆弧轨道的最大压力.
如图所示,质量为0.2kg的物体带正电,其电量为4×10-4C,从半径为0.3m光滑的1/4圆弧滑轨上端A点由静止下滑到底端B点,然后继续沿水平面滑动。物体与水平面间的滑动摩擦因数为0.4,整个装置处于E=103N/C的竖直向下的匀强电场中。(g取10m/s2)求:
(1)物体运动到圆弧滑轨底端B点时对轨道的压力大小;
(2)物体在水平面上滑行的最大距离。
如图所示,重力为G1=8N的砝码悬挂在绳PA和PB的结点上,PA偏离竖直方向37°角,PB沿水平方向且连在重力为G2=10N的木块上,木块静止于倾角为37°的斜面上,试求:
(1)木块与斜面间的摩擦力;
(2)木块所受斜面的弹力.
如图所示,两段长均为L的轻质线共同系住一个质量为m的小球,另一端分别固定在等高的A,B两点,A,B两点间距也为L,今使小球在竖直平面内做圆周运动,当小球到达最高点的速率为v时,两段线中张力恰好均为零,若小球到达最高点速率为2v。则此时每段线中张力为多少?(重力加速度为g)
在光滑水平桌面中央固定一边长为0.3m的小正三棱柱abc俯视如图所示。长度为L=1m的细线,一端固定在a点,另一端拴住一个质量为m=1kg、不计大小的小球。初始时刻,把细线拉直在ca的延长线上,并给小球以v0=1m/s且垂直于细线方向的水平速度,由于棱柱的存在,细线逐渐缠绕在棱柱上。已知细线所能承受的最大张力为8N,求:
(1)小球从开始运动至绳断时的位移。
(2)绳断裂前小球运动的总时间。
光滑水平面AB与竖直面内的粗糙半圆形导轨在B点平滑连接,导轨半径为R,一个质量m的小物块在A点以v0=3的速度向B点运动,如图所示, AB=4R,物块沿圆形轨道通过最高点C后做平抛运动,最后恰好落回出发点A。( g取10 m/s2),求:
(1) 物块在C点时的速度大小vC;
(2) 物块在C点处对轨道的压力大小FN;
(3) 物块从B到C过程阻力所做的功。
如图所示,一根轻质弹簧的原长为20cm,竖直悬挂着,当用15N的力向下拉弹簧时,量得弹簧长24cm.问:
(1)弹簧的劲度系数为多少?
(2)若把它竖立在水平桌面上,用30N的力竖直向下压时,弹簧长为多少?
为测量小铜块与瓷砖表面间的动摩擦因数,一同学将贴有标尺的瓷砖的一端放在水平桌面上,形成一倾角为 α的斜面(已知sin α=0.34,cos α=0.94),小铜块可在斜面上加速下滑,如图所示。该同学用手机拍摄小铜块的下滑过程,然后解析视频记录的图像,获得5个连续相等时间间隔(每个时间间隔Δ T=0.20 s)内小铜块沿斜面下滑的距离 s i( i=1,2,3,4,5),如下表所示。
s 1 |
s 2 |
s 3 |
s 4 |
s 5 |
5.87cn |
7.58cm |
9.31cm |
11.02cm |
12.74cm |
由表中数据可得,小铜块沿斜面下滑的加速度大小为_______m/s 2,小铜块与瓷砖表面间的动摩擦因数为_________。(结果均保留2位有效数字,重力加速度大小取9.80 m/s 2)
如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ.重力加速度为g.
(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;
(2)要使纸板相对砝码运动,求所需拉力的大小;
(3)本实验中,m1=0.5kg,m2=0.1kg,μ=0.2,砝码与纸板左端的距离d=0.1m,取g=10m/s2.若砝码移动的距离超过l=0.002m,人眼就能感知.为确保实验成功,纸板所需的拉力至少多大?
如图所示,水平轨道MN与竖直光滑半圆轨道相切于N点,轻弹簧左端固定在轨道的M点,将一质量为m=1kg的小物块靠在弹簧右端并压缩至O点,此时弹簧储有弹性势能Ep,现将小物块无初速释放,小物块恰能通过轨道最高点B,此后水平飞出再落回到水平面。已知ON的距离L=3.0m,小物块与水平轨道间的动摩擦因数μ=0.2,圆轨道半径R=0.4m,g取10 m/s2。求:
(1)小物块通过B点抛出后,落地点距N的水平距离x;
(2)弹簧储有的弹性势能Ep。
如图所示,质量为M=50kg的人通过光滑的定滑轮让质量为m=10kg的重物从静止开始向上做匀加速运动,并在2s内将重物提升了4m.若绳与竖直方向夹角为θ=370,求:(sin37°=0.6,cos37°=0.8,g=10m/s2)
(1)物体上升的加速度多大?
(2)人对绳子的拉力为多大?
(3)地面对人的摩擦力和人对地面的压力分别多大?
如图所示,重力为G1=8N的砝码悬挂在绳PA和PB的结点上,PA偏离竖直方向37°角,PB沿水平方向且连在重力为G2=100N的木块上,木块静止于倾角为37°的斜面上,试求:
(1)PA、PB绳上的拉力分别为多大?
(2)木块与斜面间的摩擦力;
(3)木块所受斜面的弹力.
如图,质量为M=5kg的斜劈形物体放在水平地面上,质量为m=1kg的物块以某大小为10m/s的初速度沿斜劈的粗糙斜面向上滑动,至速度为零后返回,这一过程中斜劈始终保持静止。已知斜劈的斜面倾角为37º,物体与斜劈的动动摩擦因数为μ=0.5,重力加速度g=10m/s2。试求:
(1)物体从开始上滑到到最高点所用时间。
(2)物体沿斜劈下滑的过程中,斜劈对地面的压力大小。
(3)物体沿斜劈上滑的过程中,地面施加给斜劈的静摩擦力大小和方向。
如图所示,光滑的水平面AB与半径R=0.4m的光滑竖直半圆轨道BCD在B点相切,D点为半圆轨道最高点,A点的右侧连接一粗糙的水平面。用细线连接甲、乙两物体,中问夹一轻质压缩弹簧,弹簧与甲、乙两物体不拴接,甲的质量朋=4kg,乙的质量=5kg,甲、乙均静止。若固定乙,烧断细线,甲离开弹簧后经过B点进入半圆轨道,过D点时对轨道的压力恰好为零。取g=10m/s2,甲、乙两物体均可看作质点,求:
(1)甲离开弹簧后经过B点时的速度的大小;
(2)在弹簧压缩量相同的情况下,若固定甲,烧断细线,乙物体离开弹簧后从A点进入动摩擦因数=0.4的粗糙水平面,则乙物体在粗糙水平面运动的位移S。
如图所示,P是倾角为30°的光滑固定斜面.劲度为k的轻弹簧一端同定在斜面底端的固定挡板C上,另一端与质量为m的物块A相连接.细绳的一端系在物体A上,细绳跨过不计质量和摩擦的定滑轮,另一端有一个不计质量的小挂钩.小挂钩不挂任何物体时,物体A处于静止状态,细绳与斜面平行.在小挂钩上轻轻挂上一个质量也为m的物块B后,物体A沿斜面向上运动.斜面足够长,运动过程中B始终未接触地面.
(1)求物块A刚开始运动时的加速度大小a;
(2)设物块A沿斜面上升通过Q点位置时速度最大,求Q点到出发点的距离x0及最大速度vm;
(3)把物块B的质量变为Nm(N>0.5),小明同学认为,只要N足够大,就可以使物块A沿斜面上滑到Q点时的速度增大到2vm,你认为是否正确?如果正确,请说明理由,如果不正确,请求出A沿斜面上升到Q点位置时的速度的范围.