“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的电势为 ,内圆弧面CD的电势为,足够长的收集板MN平行边界ACDB,ACDB与MN板的距离为L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB的粒子再次返回。
(1)求粒子到达O点时速度的大小;
(2)如图2所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB圆弧面的粒子经O点进入磁场后最多有能打到MN板上,求所加磁感应强度的大小;
(3)如图3所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个垂直MN的匀强电场,电场强度的方向如图所示,大小,若从AB圆弧面收集到的某粒子经O点进入电场后到达收集板MN离O点最远,求该粒子到达O点的速度的方向和它在PQ与MN间运动的时间。
如图所示,长L=9m的传送带与水平方向的倾角为37°,在电动机的带动下以v="4m/s" 的速率顺时针方向运行,在传送带的B端有一离传送带很近的挡板P可将传送带上的物块挡住,在传送带的A端无初速地放一质量m=1kg的物块,它与传送带间的动摩擦因数=0.5,物块与挡板的碰撞能量损失及碰撞时间不计。(sinθ=0.6,cosθ=0.8,g=10m/s2)问:
(1)物块与挡板P第一次碰撞后,上升到最高点时到挡板P的距离;
(2)若改为将一与皮带间动摩擦因素为μ=0.875、质量不变的新木块轻放在B端,求木块运动到A点过程中电动机多消耗的电能与电动机额定功率的最小值。
如图所示,在倾角为的光滑斜面上,物块A.B质量均为,物块A静止在轻弹簧上端,物块B用细线与斜面顶端相连,A.B挨在一起但A.B之间无弹力,已知重力加速度为,某时刻把细线剪断,当细线剪断后瞬间,下列说法正确的是( )
A.物块B的加速度为
B.物块A的加速度为
C.物块A.B间的弹力为
D.物块A.B间的弹力为
如图甲所示,在直角坐标系0≤x≤L区域内有沿y轴方向的匀强电场,其电场强度大小和方向随时间变化的关系如图乙所示,现有质量为m,带电量为e的电子(不计重力)不断的从原点O以速度v0沿x轴正方向射入电场,问
(1)若要电子飞出电场时速度方向仍然沿x轴方向,则电场变化的周期必须满足何条件?
(2)若要电子从图中的A点沿x轴飞出,则电子应该在什么时刻进入电场?
(3)若在电场右侧有一个以点(3L,0)为圆心,半径为L的圆形磁场区域,且满足,则所有能进入磁场的电子将从何处飞出磁场?
如图所示,光滑水平面上,轻弹簧两端分别拴住质量均为m的小物块A和B,B物块靠着竖直墙壁。今用水平外力缓慢推A,使A、B间弹簧压缩,当压缩到弹簧的弹性势能为E时撤去此水平外力,让A和B在水平面上运动。求:
①当弹簧达到最大长度时A、B的速度大小;
②当B离开墙壁以后的运动过程中,弹簧弹性势能的最大值。
现代化的生产流水线大大提高了劳动效率,如下图为某工厂生产流水线上的水平传输装置的俯视图,它由传送带和转盘组成。物品从A处无初速、等时间间隔地放到传送带上,运动到B处后进入匀速转动的转盘随其一起运动(无相对滑动),到C处被取走装箱。已知A、B的距离L =" 9.0" m,物品在转盘上与转轴O的距离R =" 3.0" m、与传送带间的动摩擦因数μ1 = 0.25,传送带的传输速度和转盘上与O相距为R处的线速度均为v =" 3.0" m/s,取g =" 10" m/s2。问:
(1)物品从A处运动到B处的时间t;
(2)若物品在转盘上的最大静摩擦力可视为与滑动摩擦力大小相等,则物品与转盘间的动摩擦因数μ2至少为多大?
(3)若物品的质量为0.5 kg,每输送一个物品从A到C,该流水线为此至少多做多少功?
如图所示,倾角为θ=45°的粗糙平直导轨与半径为R的光滑圆环轨道相切,切点为B,整个轨道处在竖直平面内.一质量为m的小滑块从导轨上离地面高为h=3R的D处无初速下滑并进入圆环轨道.接着小滑块从圆环最高点C水平飞出,恰好击中导轨上与圆心O等高的P点,不计空气阻力.求:
(1)滑块运动到圆环最高点C时的速度的大小;
(2)滑块运动到圆环最低点时对圆环轨道压力的大小;
(3)滑块在斜面轨道BD间运动的过程中克服摩擦力做的功。
(18分)图为某种鱼饵自动投放器中的投饵管装置示意图,其下半部AB是一长为2R的竖直细管,上半部BC是半径为R的四分之一圆弧弯管,管口沿水平方向,AB管内有一原长为R、下端固定的轻质弹簧。投饵时,每次总将弹簧长度压缩到0.5R后锁定,在弹簧上端放置一粒鱼饵,解除锁定,弹簧可将鱼饵弹射出去。如果质量为m的鱼饵到达管口C时,对上侧管壁的弹力恰好为mg。不计鱼饵在运动过程中的机械能损失,且锁定和解除锁定时,均不改变弹簧的弹性势能。已知重力加速度为g、求:
(1)质量为m的鱼饵到达管口C时的速度大小VC;
(2)弹簧压缩到0.5R时的弹性势能Ep;
(3)已知地面与水面相距1.5R,若使该投饵管绕AB管的中轴线00′在360°角的范围内缓慢转动,每次弹射时只放置一粒鱼饵,鱼饵的质量在m到m之间变化,且均能落到水面。持续投放足够长时间后,鱼饵能够落到水面的最大面积S是多少?
如图a所示,小物体从竖直弹簧上方离地高h1处由静止释放,其动能Ek与离地高度h的关系如图b所示.其中高度从h1下降到h2,图象为直线,其余部分为曲线,h3对应图象的最高点,轻弹簧劲度系数为k,小物体质量为m,重力加速度为g。以下说法正确的是( )
A.小物体下降至高度h3时,弹簧形变量为0 |
B.小物体下落至高度h5时,加速度为0 |
C.小物体从高度h2下降到h4,弹簧的弹性势能增加了 |
D.小物体从高度h1下降到h5,弹簧的最大弹性势能为 |
如图所示,质量为M、半径为R的半球形物体A静止在粗糙水平地面上,通过最高点处的钉子用水平轻质细线拉住一质量为m、半径为r的光滑球B,重力加速度为g。则( )
A.A对地面的摩擦力方向向左 |
B.B对A的压力大小为 |
C.细线对小球的拉力大小为 |
D.若剪断绳子(A不动),则此瞬时球B加速度大小为 |
粗糙水平轨道AB与竖直平面内的光滑圆弧轨道BC相切于B点,一物块(可看成为质点)在水平向右的恒力F作用下自水平轨道的P点处由静止开始匀加速运动到B,此时撤去该力,物块滑上圆弧轨道,在圆弧轨道上运动一段时间后,回到水平轨道,恰好返回到P点停止运动,已知物块在圆弧轨道上运动时对轨道的压力最大值为F1=2.02N,最小值为F2=1.99N,当地重力加速度为g=10m/s2.
(1)求物块的质量m的大小;
(2)若已知圆弧轨道的半径为R=8m,P点到B点的距离是x=0.5m,求F的大小.
如图所示,AB是位于竖直平面内、半径R=0.5 m的圆弧形的光滑绝缘轨道,其下端点B与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度E=5×103 N/C.今有一质量为m=0.1 kg、带电荷量q=+8×10-5C的小滑块(可视为质点)从A点由静止释放.若已知滑块与水平轨道间的动摩擦因数μ=0.05,取g=10 m/s2,求:
(1) 小滑块第一次经过圆弧形轨道最低点B时对B点的压力;
(2) 小滑块运动到右侧最远处到最低点B的距离;
(3) 小滑块在水平轨道上通过的总路程。
如图所示,轻质弹簧的劲度系数为20 N/cm,用其拉着一个重200 N的物体在水平面上运动.当弹簧的伸长量为4 cm时,物体恰在水平面上做匀速直线运动.
(1)求物体与水平面间的动摩擦因数;
(2)当弹簧的伸长量为6 cm时,物体受到的水平拉力有多大?这时物体受到的摩擦力有多大?
(3)如果在物体运动的过程中突然撤去弹簧,而物体在水平面上能继续滑行,这时物体受到的摩擦力有多大?
如图所示,水平地面上叠放着物块A和木板B,物块A用水平轻质弹簧拉着固定在墙上。已知,物体A的质量mA=5kg,木板B的质量mB=10kg,物块与木板之间、木板与地面之间的动摩擦因数均为μ=0.2,弹簧的劲度系数k=200N/m。g 取10 N/kg,若要将物木板B从A的下方匀速拉出。求:
(1)轻质弹簧的伸长量x;
(2)作用在物块B上的水平拉力F的大小。
如图所示,一质量为m的小球,用长为L的轻绳悬挂于O点,初始时刻小球静止于P点。第一次小球在水平拉力F作用下,从P点缓慢地移动到Q点,此时轻绳与竖直方向夹角为θ,张力大小为T1;第二次在水平恒力F′作用下,从P点开始运动并恰好能到达Q点,至Q点时轻绳中的张力为大小T2,不计空气阻力,重力加速度为g,关于这两个过程,下列说法中正确的是
A.第一个过程中,拉力F在逐渐变大,且最大值一定大于F′ |
B.两个过程中,轻绳的张力均变大 |
C., |
D.第二个过程中,重力和水平恒力F′的合力的功率先增加后减小 |