如图所示,一轻绳吊着粗细均匀的棒,棒下端离地面高H,上端套着一个细环,棒和环的质量均为m,相互间最大静摩擦力等于滑动摩擦力kmg(k>1)。断开轻绳,棒和环自由下落。假设棒足够长,与地面发生碰撞时,触地时间极短,无动能损失.棒在整个运动过程中始终保持竖直,空气阻力不计。求:
(1)从断开轻绳到棒和环都静止,摩擦力对环及棒做的总功W.
(2)从断开轻绳到棒和环都静止,棒运动的总路程s.
如图甲所示,有一倾角为300的光滑固定斜面,斜面底端的水平面上放一质量为M的木板.开始时质量为m =1kg的滑块在水平向左的力F作用下静止在斜面上,今将水平力F变为水平向右大小不变,当滑块滑到木板上时撤去力F(假设斜面与木板连接处用小圆弧平滑连接)。此后滑块和木板在水平上运动的v-t图象如图乙所示,g=10 m/s2.求
(1)水平作用力F的大小;
(2)滑块开始下滑时的高度;
(3)木板的质量。
如图所示的传送带,其水平部分ab的长度为2m,倾斜部分bc的长度为4m,bc与水平面的夹角为θ=370,将一小物块A(可视为质点)轻轻放于a端的传送带上,物块A与传送带间的动摩擦因数为μ=0.25.传送带沿图示方向以v=2m/s的速度匀速运动,若物块A始终未脱离皮带(g=10m/s2,sin370=0.6,cos370=0.8)。求:
(1)小物块从a端被传送到b端所用的时间
(2)小物块被传送到c端时的速度大小
(3)若当小物块到达b端时,传送到的速度突然增大为v',问v'的大小满足什么条件可以使小物块在传送带bc上运动所用的时间最短?
如图所示,四分之一圆轨道OA与传送带相切相连,下方的CD水平轨道与他们在同一竖直面内。圆轨道OA的半径,传送带长,圆轨道OA光滑,AB与CD间的高度差为。一滑块从O点静止释放,当滑块经过B点时(无论传送带是否运动),静止在CD上的长为的木板(此时木板的末端在B点的正下方)在的水平恒力作用下启动,此时滑块落入木板中,已知滑块与传送带的摩擦因数,木板的质量,木板与CD间的摩擦因数为,取,求:
(1)如果传送带静止,求滑块到达B点的速度。
(2)如果传送带静止,求的取值范围。
(3)如果传送带可以以任意速度传动,取,试判断滑块还能否落在木板上。
如图,在粗糙水平台阶上静止放置一质量m=0.5kg的小物块,它与水平台阶表面的动摩擦因数μ=0.5,且与台阶边缘O点的距离s=5m.在台阶右侧固定了一个圆弧挡板,圆弧半径R=1m,圆弧的圆心也在O点.今以O点为原点建立平面直角坐标系.现用F=5N的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板.
(1)若小物块恰能击中挡板上的P点(OP与水平方向夹角为37°),求其离开O点时的速度大小;
(2)为使小物块击中挡板,求拉力F作用的最短时间;
(3)改变拉力F的作用时间,使小物块击中挡板的不同位置,求击中挡板时小物块动能的最小值.
如图所示,绷紧的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,始终保持v0=2m/s的速率运行.现把一质量m=10kg的工件(可看做质点)轻轻放在皮带的底端,经时间t=1.9s,工件被传送到h=1.5m的高处,取g=10m/s2.求:
(1)工件与皮带间的动摩擦因数;
(2)电动机由于传送工件多消耗的电能.
如图所示,在冰面上将质量m=1kg的滑块从A点以初速度推出,滑块与冰面的动摩擦因数为,滑块滑行L=18m后到达B点时速度为,现将期间的一段CD用铁刷划擦,使该段的动摩擦因数变为,再使滑块从A以的初速度推出后,到达B点的速度为,取,求:
(1)初速度的大小;
(2)CD段的长度l;
(3)若AB间用铁刷划擦的CD段的长度不变,要使滑块从A到B的运动时间最长,问铁刷划擦的CD段位于何位置?并求滑块滑行的最长时间(结果保留三位有效数字)。
如图所示,质量为M、半径为R的质量分布均匀的圆环静止在粗糙的水平桌面上,一质量为m(m>M)的光滑小球以某一水平速度通过环上的小孔正对环心射入环内,与环发生第一次碰撞后到第二次碰撞前小球恰好不会从小孔中穿出。假设小球与环内壁的碰撞为弹性碰撞,只考虑圆环与桌面之间的摩擦,求圆环通过的总位移?
在如图所示的平面直角坐标系内,x轴水平、y轴竖直向下。计时开始时,位于原点处的沙漏由静止出发,以加速度a沿x轴匀加速度运动,此过程中沙从沙漏中漏出,每隔相等的时间漏出相同质量的沙。已知重力加速度为g,不计空气阻力以及沙相对沙漏的初速度。
(1)求t0时刻漏出的沙在t(t> t0)时刻的位置坐标;
(2)t时刻空中的沙排成一条曲线,求该曲线方程。
微波实验是近代物理实验室中的一个重要部分.反射式速调管是一种结构简单、实用价值较高的常用微波器件之一,它是利用电子团与场相互作用在电场中发生振荡来产生微波,其振荡原理与下述过程类似.如图1所示,在虚线MN两侧分布着方向平行于x轴的电场,其电势φ随x的分布可简化为如图2所示的折线.一带电微粒从A点由静止开始,在电场力作用下沿直线在A、B两点间往返运动.已知带电微粒质量m=1.0×10﹣20 kg,带电荷量q=﹣1.0×10﹣9 C,A点距虚线MN的距离d1=1.0cm,不计带电微粒的重力,忽略相对论效应.求:
(1)B点距虚线MN的距离d2;
(2)带电微粒在A、B之间震荡的周期T.
如图所示,在光滑绝缘的水平面上,放置两块直径为2L的同心半圆形金属板A、B,两板间的距离很近,半圆形金属板A、B的左边有水平向右的匀强电场E1,半圆形金属板A、B之间存在电场,两板间的电场强度E2可认为大小处处相等,方向都指向O,现从正对A、B板间隙、到两板的一端距离为d处静止释放一个质量为m、电荷量为q的带正电微粒(不计重力),此微粒恰能在两板间运动且不与板发生相互作用.
(1)求半圆形金属板A、B之间电场强度的E2的大小?
(2)从释放微粒开始,经过多长时间微粒的水平位移最大?
如图所示,电阻不计、间距L=1m、足够长的光滑金属导轨ab、cd与水平面成θ=37°角,导轨平面矩形区域efhg内分布着磁感应强度的大小B=1T,方向垂直导轨平面向上的匀强磁场,边界ef、gh之间的距离D=1.4m。现将质量m=0.1kg、电阻的导体棒P、Q相隔Δt=0.2s先后从导轨顶端由静止自由释放,P、Q在导轨上运动时始终与导轨垂直且接触良好,P进入磁场时恰好匀速运动,Q穿出磁场时速度为2.8m/s。已知重力加速度g=10m/s2,sin37°=0.6,求
(1)导轨顶端与磁场上边界ef之间的距离S;
(2)从导体棒P释放到Q穿出磁场的过程,回路中产生的焦耳热Q总。
如图甲所示,绷紧的水平传送带始终以恒定速率v1运行,一质量m = 1kg,初速度大小为v2的煤块从与传送带等高的光滑水平地面上的A处滑上传送带.若以地面为参考系,从煤块滑上传送带开始计时,煤块在传送带上运动的速度-时间图象如图乙所示,取g = 10m/s2,求:
(1)煤块与传送带间的动摩擦因数;
(2)煤块在传送带上运动的时间;
(3)整个过程中由于摩擦产生的热量.
如图,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.可视为质点的小物块从轨道右侧A点以初速度v0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回.已知R=0.4m,l=2.5m,v0=6m/s,物块质量m=1kg,与PQ段间的动摩擦因数μ=0.4,轨道其它部分摩擦不计.取g=10m/s2.求:
(1)物块经过圆轨道最高点B时对轨道的压力;
(2)物块从Q运动到P的时间及弹簧获得的最大弹性势能;
(3)物块仍以v0从右侧冲上轨道,调节PQ段的长度l,当l长度是多少时,物块恰能不脱离轨道返回A点继续向右运动.
广东省第十四届运动会于2015年8月在湛江举行。田径100米决赛是竞争最为激烈的比赛项目之一.某运动员在100 m训练中成绩刚好为10.00 s.
(1)假设运动员从起跑开始全程一直保持匀加速运动,求运动员的加速度a及冲刺终点时速度v的大小;
(2)实际上,运动员起跑时会尽力使加速度达到最大,但只能维持一小段时间,受到体能的限制和空气阻力等因素的影响,加速度将逐渐减小,到达终点之前速度已达到最大.如图中记录的是该运动员在比赛中的v-t图象,其中时间t1(0~2 s)和时间t3(7 s~10 s)内对应的图线均可视为直线,时间t2(2 s~7s)内对应的图线为曲线,试求运动员在时间t2(2 s~7 s)内的平均速度的大小.