如图所示,光滑平行的水平金属导轨MN、PQ相距d,在M点和P点间接一个阻值为R的电阻,在两导轨间OO1O1′O′矩形区域内有垂直导轨平面竖直向下、宽为l的匀强磁场,磁感应强度大小为B;质量为m,电阻为r的导体棒ab,垂直搁在导轨上,与磁场左边界相距l0,现用一大小为F、水平向右的恒力拉ab棒,使它由静止开始运动,棒ab在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计).求:
⑴棒ab在离开磁场右边界时的速度;
⑵棒ab通过磁场区域的过程中通过电阻R的电荷量.
如图所示,在倾角θ=30°的斜面上,固定一金属框,宽l=0.25 m,接入电动势E=12 V、内阻不计的电池.垂直框面放置一根质量m=0.2 kg的金属棒ab,它与框架间的动摩擦因数μ=,整个装置放在磁感应强度B=0.8 T、垂直框面向上的匀强磁场中。当调节滑动变阻器R的阻值在什么范围内时,可使金属棒静止在框架上?(框架与金属棒的电阻不计,g取10 m/s2)
如图所示,在同一水平面的两导轨相互平行,并处在竖直向上的匀强磁场中,磁感应强度B=2T,一根质量为m=2kg的金属棒垂直导轨方向放置。导轨间距为0.5m,已知金属棒与导轨间的摩擦因数μ="0.05" ,当金属棒中的电流为5A时,金属棒做匀加速直线运动;求金属棒加速度的大小。
如图所示,两根足够长的光滑金属导轨,相距为L=10cm,竖直放置,导轨上端连接着电阻R1=1Ω,质量为m=0.01kg、电阻为R2=0.2Ω的金属杆ab与导轨垂直并接触良好,导轨电阻不计。整个装置处于与导轨平面垂直的磁感应强度为B=1T的匀强磁场中。ab杆由静止释放,经过一段时间后达到最大速率,g取10m/s2,求此时:
⑴杆的最大速率;
⑵ab间的电压;
⑶电阻R1消耗的电功率。
如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:
(1)导体棒到达轨道底端时的速度大小;
(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;
(3)整个运动过程中,电阻R产生的焦耳热Q.
如图所示,U形导轨固定在水平面上,右端放有质量为m的金属棒ab,ab与导轨间的动摩擦因数为μ,金属棒与导轨围成正方形,边长为L,金属棒接入电路的电阻为R,导轨的电阻不计.从t=0时刻起,加一竖直向上的匀强磁场,其磁感应强度随时间的变化规律为B=kt,(k>0),设金属棒与导轨间的最大静摩擦力等于滑动摩擦力.
(1)求金属棒滑动前,通过金属棒的电流的大小和方向;
(2)t为多大时,金属棒开始移动?
(3)从t=0时刻起到金属棒开始运动的过程中,金属棒中产生的焦耳热多大?
如图所示,在倾角为θ=30°的斜面上,固定一宽L=0.25 m的平行金属导轨,在导轨上端接入电源和滑动变阻器R.电源电动势E=12 V,内阻r=1 Ω,一质量m=20 g的金属棒ab与两导轨垂直并接触良好.整个装置处于磁感应强度B=0.80 T、垂直于斜面向上的匀强磁场中(导轨与金属棒的电阻不计).金属导轨是光滑的,取g=10 m/s2,要保持金属棒在导轨上静止,求:
(1)金属棒所受到的安培力的大小.
(2)通过金属棒的电流的大小.
(3)滑动变阻器R接入电路中的阻值.
(18分)如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻。导体棒a和b放在导轨上,与导轨垂直并良好接触。斜面上水平虚线PQ以下区域内,存在着垂直穿过斜面向上的匀强磁场。现对a棒施以平行导轨斜向上的拉力,使它沿导轨匀速向上运动,此时放在导轨下端的b棒恰好静止。当a棒运动到磁场的上边界PQ处时,撤去拉力, a棒将继续沿导轨向上运动一小段距离后再向下滑动,此时b棒已滑离导轨。当a棒再次滑回到磁场上边界PQ处时,又恰能沿导轨匀速向下运动。已知a棒、b棒和定值电阻的阻值均为R,b棒的质量为m,重力加速度为g, 导轨电阻不计。求
(1)a棒在磁场中沿导轨向上运动的过程中,a棒中的电流大小Ia与定值电阻R中的电流大小IR之比;
(2)a棒质量ma;
(3)a棒在磁场中沿导轨向上运动时所受的拉力F。
如图所示,PQ和MN是固定于水平面内的平行光滑金属轨道,轨道足够长,其电阻可忽略不计。金属棒ab、cd放在轨道上,始终与轨道垂直,且接触良好。金属棒ab、cd的质量均为m,长度均为L。两金属棒的长度恰好等于轨道的间距,它们与轨道形成闭合回路。金属棒ab的电阻为2R,金属棒cd的电阻为R。整个装置处在竖直向上、磁感应强度为B的匀强磁场中。
(1)若保持金属棒ab不动,使金属棒cd在与其垂直的水平恒力F作用下,沿轨道以速度v做匀速运动。试推导论证:在Δt时间内,F对金属棒cd所做的功W等于电路获得的电能E电;
(2)若先保持金属棒ab不动,使金属棒cd在与其垂直的水平力F′(大小未知)作用下,由静止开始向右以加速度a做匀加速直线运动,水平力F′作用t0时间撤去此力,同时释放金属棒ab。求两金属棒在撤去F′后的运动过程中,
①金属棒ab中产生的热量;
②它们之间的距离改变量的最大值Dx。
如图所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直,且接触良好,整套装置处于匀强磁场中。金属杆ab中通有大小为I的电流。已知重力加速度为g。
(1)若匀强磁场方向垂直斜面向下,且不计金属杆ab和导轨之间的摩擦,金属杆ab静止在轨道上,求磁感应强度的大小;
(2)若金属杆ab静止在轨道上面,且对轨道的压力恰好为零。试说明磁感应强度大小和方向应满足什么条件;
(3)若匀强磁场方向垂直斜面向下,金属杆ab与导轨之间的动摩擦因数为μ,且最大静摩擦力等于滑动摩擦力。欲使金属杆ab静止,则磁感应强度的最大值是多大。
如图所示,竖直向上的匀强磁场,零时刻磁感应强度B0为2T,之后以1T/s在变大,水平轨道电阻不计,且不计摩擦阻力。宽L=2m的导轨上放一电阻r=lΩ的导体棒,并用水平线通过定滑轮吊着质量M=2kg(g=10m/s2)的重物,轨道左端连接的电阻R=19Ω,图中的l=1m,求:
(1)重物被吊起前感生电流大小;
(2)零时刻起至少经过多长时间才能吊起重物.
如图所示,PQ和MN为水平、平行放置的金属导轨,相距1m,导体棒ab跨放在导轨上,棒的质量m=0.2kg,棒的中点用细绳经滑轮与物体相连,物体质量M=0.3kg,棒与导轨间的动摩擦因数=0.5,匀强磁场的磁感应强度B=2T,方向竖直向下,为了使物体保持静止,应在棒中通入多大的电流?方向如何?
如图所示,在倾角为θ=30°的斜面上,固定一宽L=0.25 m的平行金属导轨,在导轨上端接入电源和滑动变阻器R.电源电动势E=12 V,内阻r=1Ω,一质量m=20g的金属棒ab与两导轨垂直并接触良好.整个装置处于磁感应强度B=0.80 T、垂直于斜面向上的匀强磁场中(导轨与金属棒的电阻不计).金属导轨是光滑的,取g=10 m/s2,要保持金属棒在导轨上静止,求:
(1)金属棒所受到的安培力大小;
(2)通过金属棒的电流;
(3)滑动变阻器R接入电路中的阻值.
如图所示,PQ和MN为水平、平行放置的金属导轨,相距1m,导体棒ab跨放在导轨上,棒的质量m=0.2㎏,棒的中点用细绳经滑轮与物体相连,物体质量M=0.3㎏,棒与导轨间的动摩擦因数=0.5,匀强磁场的磁感应强度B=2T,方向竖直向下,为了使物体保持静止,应在棒中通入多大的电流?方向如何?
(12分)如图所示,两足够长的平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面的夹角=30°,导轨电阻不计,磁感应强度为B的匀强磁场垂直于导轨平面向上。长为L的金属棒垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为、电阻为R。两金属导轨的上端连接一个灯泡,灯泡的电阻也为R。现闭合开关K ,给金属棒施加一个方向垂直于杆且平行于导轨平面向上的、大小为F=2mg的恒力,使金属棒由静止开始运动,当金属棒达到最大速度时,灯泡恰能达到它的额定功率。重力加速度为g,求:
(1)金属棒能达到的最大速度vm;
(2)灯泡的额定功率PL;
(3)若金属棒上滑距离为s时速度恰达到最大,求金属棒由静止开始上滑2s的过程中,金属棒上产生的电热Q1。