如图所示,粗糙斜面与光滑水平面通过半径可忽略的光滑小圆弧平滑连接,斜面倾角α=37°,A、B是两个质量均为 m=1㎏的小滑块(可视为质点),C为左端附有胶泥的质量不计的薄板,D为两端分别连接B和C的轻质弹簧.薄板、弹簧和滑块B均处于静止状态.当滑块A置于斜面上且受到大小F=4N,方向垂直斜面向下的恒力作用时,恰能向下匀速运动.现撤去F,让滑块A从斜面上距斜面底端L=1m处由静止下滑,若取g=10m/s2,sin37°=0.6,cos37°=0.8.
(1)求滑块A到达斜面底端时的速度大小v1;
(2)滑块A与C接触后粘连在一起(不计此过程中的机械能损失),求此后两滑块和弹簧构成的系统在相互作用过程中,弹簧的最大弹性势能Ep.
如图所示,光滑水平面上有一质量M=4.0kg的平板车,车的上表面右侧是一段长L=1.0m的水平轨道,水平轨道左侧连一半径R=0.25m的1/4光滑圆弧轨道,圆弧轨道与水平轨道在O/点相切.车右端固定一个尺寸可以忽略、处于锁定状态的压缩弹簧,一质量m=1.0kg的小物块紧靠弹簧,小物块与水平轨道间的动摩擦因数μ=0.5.整个装置处于静止状态,现将弹簧解除锁定,小物块被弹出,恰能到达圆弧轨道的最高点A,g取10m/s2.求:
(1)解除锁定前弹簧的弹性势能;
(2)小物块第二次经过O/点时的速度大小;
(3)最终小物块与车相对静止时距O/点的距离.
如图所示,一轻绳穿过光的定滑轮,两端各拴一小物块,它们的质量分别为m1、m2,已知m2=3m1,起始时m1放在地上,m2离地面高度为h=1.00m,绳子处于拉直状态,然后放手,设物块与地面相碰时完全没有弹起(地面为水平沙地),绳不可伸长,绳中各处拉力均相同,在突然提拉物块时绳的速度与物块相同,试求m2所走的全部路程(取三位有效数字).
如图所示,A、B两个矩形木块用轻弹簧相接静止在水平地面上,弹簧的劲度系数为k,木块A和木块B的质量均为m.
(1)若用力将木块A缓慢地竖直向上提起,木块A向上提起多大高度时,木块B将离开水平地面.
(2)若弹簧的劲度系数k是未知的,将一物体C从A的正上方某位置处无初速释放,C与A相碰后立即粘在一起(不再分离)向下运动,它们到达最低点后又向上运动.已知C的质量为m时,把它从距A高为H处释放,则最终能使B刚好离开地面.若C的质量为,要使B始终不离开地面,则释放时,C距A的高度h不能超过多少?
如图所示,滑块A1A2由轻杆连结成一个物体,其质量为M,轻杆长L.滑块B的质量为m,长L/2,其左端为一小槽,槽内装有轻质弹簧.开始时,B紧贴A,使弹簧处在压缩状态.今突然松开弹簧,在弹簧作用下整个系统获得动能Ek,弹簧松开后,便离开小槽并远离物体A1A2.以后B将在A1和A2之间发生无机械能损失的碰撞.假定整个系统都位于光滑的水平面上,求物块B的运动周期.
如图所示,质量M为4kg的平板小车静止在光滑的水平面上,小车左端放一质量为lkg的木块,车的右端固定一个轻质弹簧.现给木块一个水平向右的10N·s的瞬间冲量,木块便沿车向右滑行,在与弹簧相碰后又沿原路返回,并恰好能达到小车的左端,求:
(1)弹簧被压缩到最短时平板车的速度v;
(2)木块返回小车左端时的动能Ek;
(3)弹簧获得的最大弹性势能Epm.
如图所示,EF为水平地面,O点左侧是粗糙的,右侧是光滑的,一轻质弹簧右端固定在墙壁上,左端与静止在O点、质量为m的小物块A连接,弹簧处于原长状态.质量为2m的物块B在大小为F的水平恒力作用下由C处从静止开始向右运动,已知物块B与地面EO段间的滑动摩擦力大小为,物块B运动到O点与物块A相碰并一起向右运动(设碰撞时间极短),运动到D点时撤去外力F.物块B和物块A可视为质点.已知CD=5L,OD=L.求:
(1)撤去外力后弹簧的最大弹性势能?
(2)物块B从O点开始向左运动直到静
止所用的时间是多少?
如图所示,劲度系数为k=200N/m的轻弹簧一端固定在墙上,另一端连一质量为M=8kg的小车a,开始时小车静止,其左端位于O点,弹簧没有发生形变,质量为m=1kg的小物块b静止于小车的左侧,距O点s=3m,小车与水平面间的摩擦不计,小物块与水平面间的动摩擦系数为μ=0.2,取g=10m/s2.今对小物块施加大小为F=8N的水平恒力使之向右运动,并在与小车碰撞前的瞬间撤去该力,碰撞后小车做振幅为A=0.2m的简谐运动,已知小车做简谐运动周期公式为T=2,弹簧的弹性势能公式为Ep=(x为弹簧的形变量),求:
(1)小物块与小车磁撞前瞬间的速度是多大?
(2)小车做简谐运动过程中弹簧最大弹性势能是多少?小车的最大速度为多大?
(3)小物块最终停在距O点多远处?当小物块刚停下时小车左端运动到O点的哪一侧?
质量为M=3kg平板车放在光滑的水平面上,在平板车的最左端有一小物块(可视为质点),物块的质量为m=1kg,小车左端上方如图固定着一障碍物A,初始时,平板车与物块一起以水平速度v=2m/s向左运动,当物块运动到障碍物A处时与A发生无机械能损失的碰撞,而小车可继续向左运动.取重力加速度g=10m/s2.
(1)设平板车足够长,求物块与障碍物第一次碰撞后,物块与平板车所能获得的共同速率;
(2)设平板车足够长,物块与障碍物第一次碰撞后,物块向右运动所能达到的最大距离是s=0.4m,求物块与平板车间的动摩擦因数;
(3)要使物块不会从平板车上滑落,平板车至少应为多长?
静止在光滑水平地面上的平板小车C,质量为mC =3kg,物体A、B的质量为mA=mB=1kg,分别以vA=4m/s和vB=2m/s的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A、B两物体与车的动摩擦因数均为=0.2.求:
(1)小车的最终的速度;
(2)小车至少多长(物体A、B的大小可以忽略).
一质量M=2kg的长木板B静止在光滑的水平面上,B的右端与竖直挡板的距离为s=0.5m.一个质量为m=1kg的小物体A以初速度v0=6m/s从B的左端水平滑上B,当B与竖直挡板每次碰撞时,A都没有到达B的右端.设定物体A可视为质点,A、B间的动摩擦因数μ=0.2,B与竖直挡板碰撞时间极短且碰撞过程中无机械能损失,g取10m/s2.求:
(1)B与竖直挡板第一次碰撞前的瞬间,A、B的速度值各是多少?
(2)最后要使A不从B上滑下,木板B的长度至少是多少?(最后结果保留三位有效数字)
在光滑的水平面上有一质量M=2kg的木板A,其右端挡板上固定一根轻质弹簧,在靠近木板左端的P处有一大小忽略不计质量m=2kg的滑块B.木板上Q处的左侧粗糙,右侧光滑.且PQ间距离L=2m,如图所示.某时刻木板A以的速度向左滑行,同时滑块B以的速度向右滑行,当滑块B与P处相距L时,二者刚好处于相对静止状态,若在二者共同运动方向的前方有一障碍物,木板A与它碰后以原速率反弹(碰后立即撤去该障碍物).求B与A的粗糙面之间的动摩擦因数和滑块B最终停在木板A上的位置.(g取10m/s2)
长为0.51m的木板A,质量为1kg.板上右端有物块B,质量为3kg.它们一起在光滑的水平面上向左匀速运动.速度v0=2m/s.木板与等高的竖直固定板C发生碰撞,时间极短,没有机械能的损失.物块与木板间的动摩擦因数μ=0.5.g取10m/s2.求:
(1)第一次碰撞后,A、B共同运动的速度大小和方向;
(2)第一次碰撞后,A与C之间的最大距离;(结果保留两位小数)
(3)A与固定板碰撞几次,B可脱离A板.
光滑水平地面上停放着一辆质量m=2kg的平板车,质量M=4kg可视为质点的小滑块静放在车左端,滑块与平板车之间的动摩擦因数μ=0.3,如图所示.一水平向右的推力F=24N作用在滑块M上0.5s撤去,平板车继续向右运动一段时间后与竖直墙壁发生碰撞,设碰撞时间极短且车以原速率反弹,滑块与平板之间的最大静摩擦力与滑动摩擦力大小相等,平板车足够长,以至滑块不会从平板车右端滑落,g取10m/s2.求:
(1)平板车第一次与墙壁碰撞后能向左运动的最大距离s多大?此时滑块的速度多大?
(2)平板车第二次与墙壁碰撞前的瞬间速度v2多大?
(3)为使滑块不会从平板车右端滑落,平
板车l至少要有多长?