高中物理

已知一颗人造卫星在半径为R的某行星上空绕该行星做匀速圆周运动,经过时间t,卫星运动的弧长为s,卫星与行星的中心连线扫过的角度是θ弧度。(已知万有引力常量为G)求:
(1)人造卫星距该行量表面的高度h;
(2)该行量的质量M;
(3)该行量的第一宇宙速度v1

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

2013年12月14日嫦娥三号成功实现了月球表面软着陆.嫦娥三号着陆前,先在距月球表面高度为h的圆轨道上运行,经过变轨进入远月点高度为h、近月点高度忽略不计的椭圆轨道上运行,为下一步月面软着陆做准备.已知月球半径为R,月球质量为M.

(1)求嫦娥三号在距月球表面高度为h的圆轨道上运行的周期T1
(2)在开普勒第三定律=k中,常数k可由嫦娥三号在圆轨道上运行的规律推出.求嫦娥三号在椭圆轨道上运行的周期T2

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

我国的月球探测计划“嫦娥工程”分为“绕、落、回”三步。“嫦娥三号”的任务是“落”。  2013年12月2日,“嫦娥三号”发射,经过中途轨道修正和近月制动之后,“嫦娥三号”探测器进入绕月的圆形轨道I。12月12日卫星成功变轨,进入远月点P、近月点Q的椭圆形轨道II。如图所示。 2013年12月14日,“嫦娥三号”探测器在Q点附近制动,由大功率发动机减速,以抛物线路径下降到距月面100米高处进行30s悬停避障,之后再缓慢竖直下降到距月面高度仅为数米处,为避免激起更多月尘,关闭发动机,做自由落体运动,落到月球表面。
已知引力常量为G,月球的质量为M,月球的半径为R,“嫦娥三号”在轨道I上运动时的质量为m, P、Q点距月球表面的高度分别为h1、h2

(1)求“嫦娥三号”在圆形轨道I上运动的速度大小;
(2)已知“嫦娥三号”与月心的距离为r时,引力势能为(取无穷远处引力势能为零),其中m为此时“嫦娥三号”的质量。若“嫦娥三号”在轨道II上运动的过程中,动能和引力势能相互转化,它们的总量保持不变。已知“嫦娥三号”经过Q点的速度大小为v,请根据能量守恒定律求它经过P点时的速度大小;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

我国启动“嫦娥工程”以来,分别于2007年10月24日和2010年10月1日将“嫦娥一号”和“嫦娥二号”成功发射,“嫦娥三号”亦有望在2013年落月探测90天,并已给落月点起了一个富有诗意的名字——“广寒宫”.
(1)若已知地球半径为R,地球表面的重力加速度为g,月球绕地球运动的周期为T,月球绕地球的运动近似看做匀速圆周运动,求月球绕地球运动的轨道半径r;
(2)若宇航员随登月飞船登陆月球后,在月球表面某处以速度v0竖直向上抛出一个小球,经过时间t小球落回抛出点.已知月球半径为r,引力常量为G,试求月球的质量M月.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

两颗卫星在同一轨道平面内绕地球做绕向相同的匀速圆周运动,设地球平均半径为R,a卫星离地面高为R,b卫星离地面高为3R,若某时该两卫星正好同时通过地面同一点正上方,试求从两卫星位于地面同一点正上方开始,两卫星第一次出现最远距离的时间是a卫星周期的几倍?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某同学是一位航天科技爱好者,当他从新闻中得知,中国航天科技集团公司将在2010年底为青少年发射第一颗科学实验卫星——“希望一号”卫星(代号XW-1)时,他立刻从网上搜索有关“希望一号”卫星的信息,其中一份资料中给出该卫星运行周期10.9min。他根据所学知识计算出绕地卫星的周期不可能小于83min,从而断定此数据有误。
已知地球的半径R=6.4×106m,地球表面的重力加速度g=10m/s2。请你通过计算说明为什么发射一颗周期小于83min的绕地球运行的人造地球卫星是不可能的。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知地球半径为R,引力常量为G,地球表面的重力加速度为g。不考虑地球自转的影响。
⑴ 推导第一宇宙速度v的表达式 ;   
⑵若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h ,飞行n圈,所用时间为t.,求地球的平均密度

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(1)开普勒从1609年~1619年发表了著名的开普勒行星运动三定律,其中第一定律为:所有的行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳在这个椭圆的一个焦点上。第三定律:所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等.实践证明,开普勒三定律也适用于其他中心天体的卫星运动。

(2)从地球表面向火星发射火星探测器.设地球和火星都在同一平面上绕太阳做圆周运动,火星轨道半径Rm为地球轨道半径R的1.5倍,简单而又比较节省能量的发射过程可分为两步进行:第一步,在地球表面用火箭对探测器进行加速,使之获得足够动能,从而脱离地球引力作用成为一个沿地球轨道运动的人造行星。第二步是在适当时刻点燃与探测器连在一起的火箭发动机,在短时间内对探测器沿原方向加速,使其速度数值增加到适当值,从而使得探测器沿着一个与地球轨道及火星轨道分别在长轴两端相切的半个椭圆轨道正好射到火星上.当探测器脱离地球并沿地球公转轨道稳定运行后,在某年3月1日零时测得探测器与火星之间的角距离为60°,如图所示,问应在何年何月何日点燃探测器上的火箭发动机方能使探测器恰好落在火星表面?(时间计算仅需精确到日),已知地球半径为:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

火箭发射卫星的开始阶段是竖直升空,设向上的加速度为a=5m/s2,卫星中用弹簧秤悬挂一个质量m=9kg的物体。当卫星升空到某高处时,弹簧秤的示数为85N,那么此时卫星距地面的高度是多少千米(地球半径取R=6400km,g=10m/s2)?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

“神舟”六号载人飞船在空中环绕地球做匀速圆周运动,某次经过赤道的正上空时,对应的经度为θ1(实际为西经157.5°),飞船绕地球转一圈后,又经过赤道的正上空,此时对应的经度为θ2(实际为180°).已知地球半径为R,地球表面的重力加速度为g,地球自转的周期为T0.求飞船运行的圆周轨道离地面高度h的表达式.(用θ1、θ2、T0、g和R表示)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

我国在2007年成功发射一颗绕月球飞行的卫星,计划在2012年前后发射一颗月球软着陆器,在2017年前后发射一颗返回式月球软着陆器,进行首次月球样品自动取样并安全返回地球.设想着陆器完成了对月球表面的考察任务后,由月球表面回到围绕月球做圆周运动的轨道舱,其过程如图3-4-7所示.设轨道舱的质量为m,月球表面的重力加速度为g,月球的半径为R,轨道舱到月球中心的距离为r,引力常量为G,则试求:

(1)月球的质量;
(2)轨道舱的速度大小和周期.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

地球的两颗人造卫星质量之比m1∶m2=1∶2,轨道半径之比r1∶r2=1∶2.求:
(1)线速度大小之比.
(2)角速度之比.
(3)运行周期之比.
(4)向心力大小之比.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(15分)我国发射的“嫦娥一号”卫星发射后首先进入绕地球运行的“停泊轨道”,通过加速再进入椭圆“过渡轨道”,该轨道离地心最近距离为L1,最远距离为L2,卫星快要到达月球时,依靠火箭的反向助推器减速,被月球引力“俘获”后,成为环月球卫星,最终在离月心距离L3的“绕月轨道”上飞行,如图所示.已知地球半径为R,月球半径为r,地球表面重力加速度为g,月球表面的重力加速度为,求:

(1)卫星在“停泊轨道”上运行的线速度大小;
(2)卫星在“绕月轨道”上运行的线速度大小;
(3)假定卫星在“绕月轨道”上运行的周期为T,卫星轨道平面与地月连心线共面,求在该一个周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间(忽略月球绕地球转动对遮挡时间的影响).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(15分)如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地球表面的高度为h,已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.

(1)求卫星B的运行周期.
(2)如果卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、A、B在同一直线上),则至少经过多长时间,它们再一次相距最近?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

“嫦娥三号”探测器于2013年12月2日凌晨在西昌发射中心发射成功。“嫦娥三号”经过几次成功变轨以后,探测器状态极其良好,成功进入绕月轨道。12月14日21时11分,“嫦娥三号”探测器在月球表面预选着陆区域成功着陆,标志我国已成为世界上第三个实现地外天体软着陆的国家。 设“嫦娥三号”探测器环绕月球的运动为匀速圆周运动,它距月球表面的高度为h,已知月球表面的重力加速度为g、月球半径为R,引力常量为G,则
(1)探测器绕月球运动的向心加速度为多大;
(2)探测器绕月球运动的周期为多大。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中物理人造卫星计算题