“神舟”六号载人飞船在空中环绕地球做匀速圆周运动,某次经过赤道的正上空时,对应的经度为θ1(实际为西经157.5°),飞船绕地球转一圈后,又经过赤道的正上空,此时对应的经度为θ2(实际为180°).已知地球半径为R,地球表面的重力加速度为g,地球自转的周期为T0.求飞船运行的圆周轨道离地面高度h的表达式.(用θ1、θ2、T0、g和R表示)
如图所示,相距为R的两块平行金属板M、N正对着放置,S1、S2分别为M、N板上的小孔,S1、S2、O三点共线,它们的连线垂直M、N,且S2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子经S1进入M、N间的电场后,通过S2进入磁场.粒子在S1处的速度以及粒子所受的重力均不计.(1)当M、N间的电压为U时,求粒子进入磁场时速度的大小v;(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U0;(3)当M、N间的电压不同时,粒子从S1到打在D上经历的时间t会不同,求t的最小值.
在水平地面上有一质量为10kg的物体,在水平拉力F的作用下由静止开始运动,10s后拉力大小减为F/4,方向不变,再经过20s停止运动。该物体的速度与时间的关系如图所示。求:(1)整个过程中物体的位移大小;(2)物体与地面的动摩擦因数。
如图甲所示,两平行金属板间接有如图乙所示的随时间t变化的电压u,两板间电场可看作是均匀的,且两板外无电场,极板长L=0.2m,板间距离d=0.2m,在金属板右侧有一边界为MN的区域足够大的匀强磁场,MN与两板中线OO′垂直,磁感应强度B=5×10-3T,方向垂直纸面向里。现有带正电的粒子流沿两板中线OO′连续射入电场中,已知每个粒子的速度v0=105m/s,比荷q/m=108C/kg,重力忽略不计,在每个粒通过电场区域的极短时间内,电场可视作是恒定不变的。⑴ 试求带电粒子射出电场时的最大速度。⑵ 证明任意时刻从电场射出的带电粒子,进入磁场时在MN上的入射点和出磁场时在MN上的出射点间的距离为定值。⑶ 从电场射出的带电粒子,进入磁场运动一段时间后又射出磁场。求粒子在磁场中运动的最长时间和最短时间。
如图(甲)所示,一对平行光滑轨道放置在水平面上,两轨道相距l=1m,两轨道之间用R=3Ω的电阻连接,一质量m=0.5kg、电阻r=1Ω的导体杆与两轨道垂直,静止放在轨道上,轨道的电阻可忽略不计。整个装置处于磁感应强度B=2T的匀强磁场中,磁场方向垂直轨道平面向上,现用水平拉力沿轨道方向拉导体杆,拉力F与导体杆运动的位移s间的关系如图(乙)所示,当拉力达到最大时,导体杆开始做匀速运动,当位移s=2.5m时撤去拉力,导体杆又滑行了一段距离s'后停下,在滑行s'的过程中电阻R上产生的焦耳热为12J。求:(1)拉力F作用过程中,通过电阻R上电量q;(2)导体杆运动过程中的最大速度vm;(3)拉力F作用过程中,电阻R上产生的焦耳热。
如图所示,在x>0的空间中,存在沿轴正方向的匀强电场E;在x<0的空间中,存在沿轴负方向的匀强电场,场强大小也为E。一电子(电荷量大小为e、质量为m.)在x=d处的P点以沿y轴正方向的初速度v0开始运动,不计电子重力。求:(1)电子第一次到达y轴时的坐标(2)电子从P到第二次到达Y轴所经历时间