2001年10月22日,欧洲航天局由卫星观测发现银河系中心存在一个超大型黑洞,命名为MCG6-30-15,由于黑洞的强大引力,周围物质大量掉入黑洞,假定银河系中心仅此一个黑洞,已知太阳系绕银河系中心匀速运转,下列哪一组数据可估算该黑洞的质量(引力常量G为已知) ( )
A.地球绕太阳公转的周期和速度 |
B.太阳的质量和运行速度 |
C.太阳质量和到MCG6-30-15的距离 |
D.太阳运行速度和到MCG6-30-15的距离 |
宇航员在月球上做自由落体实验,将某物体由距月球表面高h处释放,经时间t后落到月球表面(设月球半径为R).据上述信息推断,飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为 ( )
A. | B. | C. | D. |
已知地球质量为M,半径为R,自转周期为T,地球同步卫星质量为m,引力常量为G,有关同步卫星,下列表述正确的是 ( )
A.卫星距地面的高度为 |
B.卫星的运行速度小于第一宇宙速度 |
C.卫星运行时受到的向心力大小为 |
D.卫星运行的向心加速度小于地球表面的重力加速度 |
宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统(假设三颗星的质量均为m,引力常量为G),通常可忽略其它星体对它们的引力作用。已观测到稳定的三星系统存在两种基本的构成形式:第一种形式是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行,则两颗运动星体的运动周期为 ;第二种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,周期与第一种形式相同,则三颗星之间的距离为 。
假设太阳系中天体的密度不变,天体直径和天体之间距离都缩小到原来的一半,地球绕太阳公转近似为匀速圆周运动,则下列物理量变化正确的是( )
A.地球的向心力变为缩小前的一半 |
B.地球的向心力变为缩小前的1/16 |
C.地球绕太阳公转周期与缩小前的相同 |
D.地球绕太阳公转周期变为缩小前的一半 |
已知太阳到地球与地球到月球的距离的比值约为390,月球绕地球旋转的周期约为27天.利用上述数据以及日常的天文知识,可估算出太阳对月球与地球对月球的万有引力的比值约为 ( )
A.0.2 | B.2 | C.20 | D.200 |
由于地球的自转,使得静止在地面的物体绕地轴做匀速圆周运动,对于这些做匀速圆周运动的物体,以下说法中正确的是 ( )
A.向心加速度都指向地心 |
B.速度等于第一宇宙速度 |
C.向心加速度等于重力加速度 |
D.运动周期与地球自转周期相等 |
关于万有引力和万有引力定律,下列说法正确的是( )
A.只有天体间才存在相互作用的引力 |
B.只有质量很大的物体间才存在相互作用的引力 |
C.物体间的距离变大时,它们间的引力将变小 |
D.物体对地球的引力小于地球对物体的引力 |
月球表面处的重力加速度是地球表面处的重力加速度的1/6,月球半径为地球半径的1/4,则登月舱靠近月球表面的环绕速度与人造地球卫星的第一宇宙速度之比为( )
A. | B. | C. | D. |
已知万有引力常量为G,根据下面的哪组数据,不可以估算出地球的质量M地( )
A.地球绕太阳运动的周期T1及地球到太阳中心的距离r1 |
B.贴近地球表面运行的卫星的周期T和地球的半径R |
C.地球表面的重力加速g和地球半径R |
D.月球绕地球运动的周期T2及月球中心到地球中心的距离r2 |
忽略地球自转影响时,地球表面上的物体受到的重力可以看做是其受到的地球的万有引力,设地球表面的重力加速度为g,在离地面高度为地球半径R的轨道上运行的卫星的向心加速度为( )
A. | B. | C. | D. |
已知地球同步卫星离地面的高度约为地球半径的6倍。若某行星的平均密度为地球平均密度的一半,它的同步卫星距其表面的高度是其半径的2.5倍,则该行星的自转周期约为
A.36小时 | B.24小时 | C.18小时 | D.12小时 |
下列关于万有引力定律的说法中,不正确的是
A.万有引力定律是牛顿发现的 |
B.F=中的G是一个比例常数,是没有单位的 |
C.万有引力定律适用于任意质点间的相互作用 |
D.两个质量分布均匀的球体之间的相互作用力也可以用F=来计算,r是两球体球心间的距离 |
“嫦娥一号”月球探测器在环绕月球运行过程中,设探测器运行的轨道半径为r,运行速率为v,当探测器在飞越月球上一些环形山中的质量密集区上空时 ( )
A.r、v都将略为减小 |
B.r、v都将保持不变 |
C.r将略为减小,v将略为增大 |
D.r将略为增大,v将略为减小 |