如图所示,AB是半径为R的1/4光滑圆弧轨道,B点的切线沿水平方向, 且B点离水平地面的高度为h, 有一物体(可视为质点)从A点由静止开始滑下,到达B点后水平飞出。(设重力加速度为g)求:(1)物体运动到B点时的速度(2)物体落地点C到B点的水平距离
小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动。当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地,如右图所示.已知握绳的手离地面高度为d,手与球之间的绳长为,重力加速度为g。忽略手的运动半径和空气阻力。
(1)求绳断时球的速度大小v
(2)问绳能承受的最大拉力多大?
(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,且绳的最大承受力不变,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?
(18分)如图所示,粗糙斜直轨道PA和两个光滑圆弧轨道、组成的S形轨道,斜轨道与圆弧轨道在A点光滑连接,B点是最低点,已知,圆弧轨道半径均为R,两圆弧交接处C、D之间留有很小空隙,刚好能够使小球通过,CD之间距离可忽略。斜轨道最高点P与水平面BQ的高度差为h=6.5R。从P点静止释放一个质量为m可视为质点的小球,小球沿S形轨道运动后从G点水平飞出,落到水平地面上,落点Q点到B点的距离为x=4R。不计空气阻力,重力加速度为g,求:
(1)小球从G点水平飞出时的速度多大?
(2)小球运动到圆形轨道最低点B点时对轨道的压力;
(3)小球与轨道PA间的动摩擦因数μ。
(15分)如图所示,一质量为m、电荷量为q的带正电的小球以水平初速度v0从离地高为h的地方做平抛运动,落地点为N,不计空气阻力,求:
(1)若在空间加一个竖直方向的匀强电场,使小球沿水平方向做匀速直线运动,则场强E为多大?
(2)若在空间再加上一个垂直于纸面向外的匀强磁场,小球的落地点仍为N,则磁感应强度B为多大?
如图所示,空间存在着方向竖直向上的匀强电场和方向垂直于纸面向内,磁感应强度大小为B的匀强磁场,带电量为+q、质量为m的小球Q静置在光滑绝缘的水平高台边缘,另一质量为m不带电的绝缘小球P以水平初速度v0向Q运动,小球P、Q正碰过程中没有机械能损失且电荷量不发生转移,已知匀强电场的电场强度E=,水平台面距离地面高度,重力加速度为g,不计空气阻力。
(1)求P、Q两球首次发生弹性碰撞后,小球Q的速度大小;
(2)P、Q两球首次发生弹性碰撞后,经多少时间小球P落地,落地点与平台边缘间的水平距离多大?
(3)若撤去匀强电场,并将小球Q重新放在平台边缘,小球P仍以水平初速度向Q运动,小球Q的运动轨迹如图所示,已知Q球在最高点和最低点所受全力的大小相等,求小球Q在运动过程中的最大速度和第一次下降的最大距离H。
如图所示,半径R=0.80m的光滑圆弧轨道竖直固定,过最低点的半径OC处于竖直位置,其右方有底面半径r=0.2m的转筒,转筒顶端与C等高,下部有一小孔,距顶端h=1m,转筒的轴线与圆弧轨道在同一竖直平面内,开始时小孔也在这一平面内的图示位置.现使一质量m=0.1kg的小物块自A点由静止开始下落后打在圆弧轨道上的B点但不反弹,在瞬间碰撞过程中,小物块沿半径方向的分速度立刻减为0,沿切线方向的分速度不变.此后,小物块沿圆弧轨道滑下,到达C点时触动光电装置,使转筒立刻以某一角速度匀速转动起来,且小物块最终正好进入小孔.已知A、B到圆心O的距离均为R,与水平方向的夹角均为θ=30°,不计空气阻力,g取l0m/s2,求:
(1)小物块刚下落到B点时,在与B点碰撞前的瞬时速度的大小;
(2)小物块到达C点时受到轨道的支持力的大小;
(3)转筒轴线距C点的距离L;
(4)转筒转动的角速度ω.
如图所示,小车A的顶部距地面高度为H=0.8m,小车质量m1=2kg,它受地面阻力大小为其对地面压力大小的0.2倍,在其顶部右前方边缘处放有一个质量为m2=8kg的物体B(大小忽略不计),物体B与小车A之间的最大静摩擦力为Ff=28N。在小车的左端施加一个水平向左,大小为F0=6N的恒力作用,整个装置处于静止状态。现用一逐渐增大的水平力F作用在B上,使A、B共同向右运动,当F增大到某一值时,物体B刚好从小车前端脱离。重力加速度g="10" m/s2.
求(1)物体B刚好从小车前端脱离时水平力F的大小。
(2)若物体B刚好从小车前端脱离时,小车A、物体B的共同速度大小为2m/s,此时立即撤去水平力F,计算当物体B落地时与小车A右前端的水平距离。
如图所示,小球从A点以固定的初速度v0水平抛出,空气阻力不计,A点右下方有一带挡板的轮子,轮子与小球运动轨迹在同一竖直面内。轮子的半径为R,抛出点A比轮轴高h,挡板的初位置在与轮轴等高的B点,调整轮轴O的位置,使平抛轨迹与轮缘相切于C,OC与OB间夹角为θ角。求:
(l)小球抛出的初速度v0大小为多少;
(2)小球抛出的瞬间轮子开始顺时针匀速转动,若不计挡板大小,要使小球打在挡板上,轮子转动的角速度为多少?
如图所示,四分之一圆轨道OA与传送带相切相连,下方的CD水平轨道与他们在同一竖直面内。圆轨道OA的半径,传送带长,圆轨道OA光滑,AB与CD间的高度差为。一滑块从O点静止释放,当滑块经过B点时(无论传送带是否运动),静止在CD上的长为的木板(此时木板的末端在B点的正下方)在的水平恒力作用下启动,此时滑块落入木板中,已知滑块与传送带的摩擦因数,木板的质量,木板与CD间的摩擦因数为,取,求:
(1)如果传送带静止,求滑块到达B点的速度。
(2)如果传送带静止,求的取值范围。
(3)如果传送带可以以任意速度传动,取,试判断滑块还能否落在木板上。
如图,在粗糙水平台阶上静止放置一质量m=0.5kg的小物块,它与水平台阶表面的动摩擦因数μ=0.5,且与台阶边缘O点的距离s=5m.在台阶右侧固定了一个圆弧挡板,圆弧半径R=1m,圆弧的圆心也在O点.今以O点为原点建立平面直角坐标系.现用F=5N的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板.
(1)若小物块恰能击中挡板上的P点(OP与水平方向夹角为37°),求其离开O点时的速度大小;
(2)为使小物块击中挡板,求拉力F作用的最短时间;
(3)改变拉力F的作用时间,使小物块击中挡板的不同位置,求击中挡板时小物块动能的最小值.
某人站在高60 m的平台边缘,以20 m/s的初速度竖直向上抛出一石块,不考虑空气阻力,取g="10" m/s2求:
(1)石块上升的最大高度。
(2)石块从抛出到落地的时间。
(3)石块落到地面时的速度。
如图所示,已知塔高H=45m,在与塔底部水平距离为x处有一电子抛靶装置,圆形靶可被竖直向上抛出,初速度为υ1,且大小可以调节.当该人看见靶被抛出时立即射击,子弹以υ2=100m/s的速度水平飞出.不计人的反应时间及子弹在枪膛中的运动时间,且忽略空气阻力及靶的大小(g取10 m/s2)。
(1)若x=200m,υ1=20m/s时,试通过计算说明靶能否被击中?
(2)当x的取值在什么范围时,无论υ1多大,靶都不能被击中?
某校物理兴趣小组决定举行遥控赛车比赛,比赛路径如图所示。可视为质点的赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直半圆轨道,并通过半圆轨道的最高点C,才算完成比赛。B是半圆轨道的最低点,水平直线轨道和半圆轨道相切于B点。已知赛车质量m=0.5kg,通电后以额定功率P=2W工作,进入竖直圆轨道前受到的阻力恒为Ff=0.4N,随后在运动中受到的阻力均可不计,L=10.00m,R=0.32m,(g取10m/s2)。求:
(1)要使赛车完成比赛,赛车在半圆轨道的B点对轨道的压力至少多大;
(2)要使赛车完成比赛,电动机至少工作多长时间;
(3)若电动机工作时间为 t0=5s,当R为多少时赛车既能完成比赛且飞出的水平距离又最大,水平距离最大是多少。
如图所示是某次四驱车比赛的轨道某一段。小明控制的四驱车(可视为质点),质量m=1.0kg,额定功率为P=7W。小明的四驱车到达水平平台上A点时速度很小(可视为0),此时启动四驱车的发动机并直接使发动机的功率达到额定功率,一段时间后关闭发动机。当四驱车由平台边缘点飞出后,恰能沿竖直光滑圆弧轨道CDE上C点的切线方向飞入圆形轨道。已知AB间的距离L=6m,BF间高度差h=0.8m,圆轨道的半径R=1m,∠COD=53°,四驱车在AB段运动时的阻力恒为1N。重力加速度g取10m/s2,不计空气阻力。sin53°=0.8,cos53°=0.6,求:
(1)求四驱车到达C点时的速度大小;
(2)发动机在水平平台上工作的时间;
(3)四驱车第一次经过D点时对轨道的压力大小。
(16分)在竖直平面内固定一轨道ABCO, AB段水平放置,长为4 m,BCO段弯曲且光滑,轨道在O点的曲率半径为1.5 m;一质量为1.0 kg、可视作质点的圆环套在轨道上,圆环与轨道AB段间的动摩擦因数为0.5。建立如图所示的直角坐标系,圆环在沿x轴正方向的恒力F作用下,从A(-7,2)点由静止开始运动,到达原点O时撤去恒力F,水平飞出后经过D(6,3)点。重力加速度g取10m/s2,不计空气阻力。求:
⑴圆环到达O点时对轨道的压力;
⑵恒力F的大小;
⑶圆环在AB段运动的时间。