如图所示,一质量为M=5.0kg,长度L=4m的平板车静止在水平地面上,距离平板车右侧S=16.5m处有一固定障碍物.障碍物上固定有一电动机A。另一质量为m=2.0kg可视为质点的滑块,以v0=8m/s的水平初速度从左端滑上平板车,同时电动机A对平板车施加一水平向右、大小为22.5N的恒力F.1s后电动机A突然将功率变为P=52.5w并保持不变,直到平板车碰到障碍物停止运动时,电动机A也同时关闭。滑块沿水平飞离平板车后,恰能无碰撞地沿圆弧切线从B点滑入光滑竖直圆弧轨道,并沿轨道下滑.已知平板车间与滑块的动摩擦因数μ1=0.5,平板车与地面的动摩擦因数μ2=0.25,圆弧半径为R=1.0m,圆弧所对的圆心角∠BOD=θ=1060,g取10m/s2,sin53°=0.8,cos53°=0.6,不计空气阻力,求:
(1)0 1s时间内,滑块相对小车运动的位移x;
(2)电动机A做功W;
(3)滑块运动到圆弧轨道最低点C时对轨道压力的大小FN.
如图所示,一固定的l/4圆弧轨道,半径为l.25m,表面光滑,其底端与水平面相切,且与水平面右端P点相距6m。轨道的下方有一长为l.5m的薄木板,木板右侧与轨道右侧相齐。现让质量为1kg的物块从轨道的顶端由静止滑下,当物块滑到轨道底端时,木板从轨道下方的缝隙中冲出,此后木板在水平推力的作用下保持6m/s的速度匀速运动,物块则在木板上滑动。当木板右侧到达P点时,立即停止运动并被锁定,物块则继续运动,最终落到地面上。已知P点与地面相距l.75m,物块与木板间的动摩擦因数为0.1,取重力加速度g=10m/s2,不计木板的厚度和缝隙大小,求:
(1)物块滑到弧形轨道底端受到的支持力大小;
(2)物块离开木板时的速度大小;
(3)物块落地时的速度大小及落地点与P点的水平距离。
如图所示,半径r = 0.2m的1/4光滑圆弧形槽底端B与水平传带平滑相接,传送带以v1=4m/s的速率顺时针转动, 其右端C点正上方悬挂一质量为m=0.1kg的物块b, BC距离L=1.25m,一质量为m=0.1kg物块a从A点无初速滑下,经传送带后与物块b相碰并粘在一起,在a、b碰撞瞬间绳子断开,a、b沿水平方向飞出,已知滑块与传送带间的动摩擦因数μ="0.2," C点距水平面的高度为h="0.8m," a、b两物块均视为质点,不计空气阻力,g取10m/s2,
求:(1)滑块a到达底端B时对槽的压力
(2)滑块a到达传送带C点的速度大小
(3)求滑块a、b的落地点到C点的水平距离
某校物理兴趣小组决定举行遥控赛车比赛。比赛路径如图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟。已知赛车质量m=0.1kg,通电后以额定功率P=1.5w工作,进入竖直轨道前受到阻力恒为0.3N,随后在运动中受到的阻力均可不记。图中L=10.00m,R=0.32m,h=1.25m,S=1.50m。问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10m/s2)
“要打战必打胜战”,我人民海军为此进行登陆演练,假设一艘战舰因吨位大吃水太深,只能停锚在离海岸登陆点x=1 km处.登陆队员需要从较高的军舰甲板上,利用绳索下滑到登陆快艇上再行登陆接近目标,若绳索两端固定好后,与竖直方向的夹角θ=37°,为保证行动最快,队员甲先匀加速滑到某最大速度,再靠摩擦匀减速滑至快艇,速度刚好为零,在队员甲开始下滑时,队员乙在甲板上同时开始向快艇以速度平抛救生圈,第一个刚落到快艇,接着抛第二个,结果第二个救生圈刚好与甲队员同时抵达快艇(快艇可视为质点),若人的质量m,重力加速度g=10 m/s2,问:
(1)军舰甲板到快艇的竖直高度H为多少?
队员甲在绳索上运动的时间t0为多少?
(2)若加速过程与减速过程中的加速度大小相等,则队员甲在何处速度最大?最大速度多大?
(3)若登陆艇额定功率5 kW,载人后连同装备总质量为103 kg,从静止开始以最大功率向登陆点加速靠近,到达岸边时刚好能达到最大速度10 m/s,若登陆舰前进时阻力恒定,则登陆艇运动的时间t′为多少?
滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来。如图所示是滑板运动的轨道,BC和DE是两段光滑圆弧形轨道,BC段的圆心为O点,圆心角为60º,半径OC与水平轨道CD垂直,水平轨道CD段粗糙且长8m。一运动员从轨道上的A点以3m/s的速度水平滑出,在B点刚好沿轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回。已知运动员和滑板的总质量为60kg,B、E两点与水平面CD的竖直高度分别为h和H,且h=2m,H=2.8m,取10m/s2。求:
(1)运动员从A运动到达B点时的速度大小vB;
(2)轨道CD段的动摩擦因数;
(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,请求出回到B点时速度的大小;如不能,则最后停在何处?
如图所示,一足够长的固定斜面与水平方向的夹角为θ=37°,物体B与斜面间的动摩擦因数为μ=0.5。将物体A以初速度v0=20m/s从斜面顶端水平抛出的同时,物体B在斜面上A以初速度2v0沿斜面向上运动,经历时间t,物体A第一次落到斜面上时,恰与沿斜面向上运动物体B相碰,已知sin37°= 0.6,cos37°= 0.8,g=10m/s2,不计空气阻力,两物体都可视为质点。求:
(1)时间t的大小。
(2)A物体刚开始做平抛运动时,A、B两物体的距离L?
滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来。如图所示是滑板运动的轨道,BC和DE是两段光滑圆弧形轨道,BC段的圆心为O点,圆心角为60º,半径OC与水平轨道CD垂直,水平轨道CD段粗糙且长8m。一运动员从轨道上的A点以3m/s的速度水平滑出,在B点刚好沿轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回。已知运动员和滑板的总质量为60kg,B、E两点与水平面CD的竖直高度分别为h和H,且h=2m,H=2.8m,取10m/s2。求:
(1)运动员从A运动到达B点时的速度大小vB;
(2)轨道CD段的动摩擦因数;
(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,请求出回到B点时速度的大小;如不能,则最后停在何处?
滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来。如图所示是滑板运动的轨道,BC和DE是两段光滑圆弧形轨道,BC段的圆心为O点,圆心角为60º,半径OC与水平轨道CD垂直,水平轨道CD段粗糙且长8m。一运动员从轨道上的A点以3m/s的速度水平滑出,在B点刚好沿轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回。已知运动员和滑板的总质量为60kg,B、E两点与水平面CD的竖直高度分别为h和H,且h=2m,H=2.8m,取10m/s2。求:
(1)运动员从A运动到达B点时的速度大小vB;
(2)轨道CD段的动摩擦因数;
(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,请求出回到B点时速度的大小;如不能,则最后停在何处?
如图所示,小球由静止开始沿光滑轨道滑下,并沿水平方向抛出,小球抛出后落在斜面上.已知斜面的倾角为θ,斜面上与小球抛出点在同一水平面上,斜面长度为L,斜面上M、N两点将斜面长度等分为3段.小球可以看作质点,空气阻力不计.为使小球能落在M点以上,释放小球的位置相对于抛出点的高度h应满足什么条件?
如图所示,半径R=0.9m的光滑的半圆轨道固定在竖直平面内,直径AC竖直,下端A与光滑的水平轨道相切.一个质量m=1kg的小球沿水平轨道从A端以VA=3m/s的速度进入竖直圆轨道,后小球恰好能通过最高点C.不计空气阻力,g取10m/s2.求:
(1)小球刚进入圆周轨道A点时对轨道的压力为多少?
(2)小球从C点离开轨道后的落地点到A点的距离为多少?
如图所示,斜面倾角为45°,从斜面上方A点处由静止释放一个质量为m的弹性小球,在B点处和斜面碰撞,碰撞后速度大小不变,方向变为水平,经过一段时间在C点再次与斜面碰撞。已知AB两点的高度差为h,重力加速度为g,不考虑空气阻力。求:
(1)小球在AB段运动过程中重力做功的平均功率P;
(2)小球落到C点时速度的大小。
如图所示,AB是固定在竖直平面内倾角=370的粗糙斜面,轨道最低点B与水平粗糙轨道BC平滑连接,BC的长度为SBC= 5.6m.一质量为M =1kg的物块Q静止放置在桌面的水平轨道的末端C点,另一质量为m=2kg的物块P从斜面上A点无初速释放,沿轨道下滑后进入水平轨道并与Q发生碰撞。已知物块P与斜面和水平轨道间的动摩擦因数均为μ=0.25,SAB = 8m, P、Q均可视为质点,桌面高h = 5m,重力加速度g=10m/s2。
(1)画出物块P在斜面AB上运动的v-t图。
(2)计算碰撞后,物块P落地时距C点水平位移x的范围。
(3)计算物块P落地之前,全过程系统损失的机械能的最大值。
如图所示,在水平面上固定一个高度为h1="0.55" m的平台ABCD,其中AB部分是L=1.6m的水平轨道,BCD为光滑的弯曲轨道,轨道最高处C处可视为半径为r=4m的小圆弧,现一个质量为m ="1kg" 的滑块以初速度v0=5m/s从A点向B点运动,当滑块滑到平台顶点C处后作平抛运动,落到水平地面且落地点的水平射程为x=0.8m,轨道顶点距水平面的高度为h2 =0.8m,(平抛过程中未与平台相撞)(取g=10m/s2)求:
(1)滑块在轨道顶点处对轨道的压力?
(2)滑块与木板间的动摩擦因数μ?
如下图是阿毛同学的漫画中出现的装置,描述了一个“吃货”用来做“糖炒栗子”的“萌”事儿:将板栗在地面小平台上以一定的初速经两个四分之一圆弧衔接而成的轨道,从最高点P飞出进入炒锅内,利用来回运动使其均匀受热。我们用质量为m的小滑块代替栗子,借这套装置来研究一些物理问题。设大小两个四分之一圆弧半径为2R和R,小平台和圆弧均光滑。将过锅底的纵截面看作是两个斜面AB、CD和一段光滑圆弧BC组成,滑块与斜面间的动摩擦因数为0.25,且不随温度变化。两斜面倾角均为,AB=CD=2R,A、D等高,D端固定一小挡板,碰撞不损失机械能。滑块的运动始终在包括锅底最低点的竖直平面内,重力加速度为g.
(1)如果滑块恰好能经P点飞出,为了使滑块恰好沿AB斜面进入锅内,应调节锅底支架高度使斜面的A、D点离地高为多少?
(2)接(1)问,试通过计算用文字描述滑块的运动过程。
(3)对滑块的不同初速度,求其通过最高点P和小圆弧最低点Q时受压力之差的最小
值。