如图所示,小球由静止开始沿光滑轨道滑下,并沿水平方向抛出,小球抛出后落在斜面上.已知斜面的倾角为θ,斜面上与小球抛出点在同一水平面上,斜面长度为L,斜面上M、N两点将斜面长度等分为3段.小球可以看作质点,空气阻力不计.为使小球能落在M点以上,释放小球的位置相对于抛出点的高度h应满足什么条件?
如图所示,ABCDO是处于竖直平面内的光滑轨道,AB是半径为R=15m的圆周轨道,CDO是直径为15m的半圆轨道。AB轨道和CDO轨道通过极短的水平轨道(长度忽略不计)平滑连接。半径OA处于水平位置,直径OC处于竖直位置。一个小球P从A点的正上方高H处自由落下,从A点进入竖直平面内的轨道运动(小球经过A点时无机械能损失)。当小球通过CDO轨道最低点C时对轨道的压力等于其重力的倍,取g为10m/s2。试求高度H的大小;试讨论此球能否到达CDO轨道的最高点O,并说明理由;求小球沿轨道运动脱离轨道后第一次落回轨道上时的速度大小。
完整的撑杆跳高过程可以简化成如图所示的三个阶段:持杆助跑、撑杆起跳上升、越杆下落。在第二十九届北京奥运会比赛中,俄罗斯女运动员伊辛巴耶娃以5.05m的成绩打破世界纪录。设伊辛巴耶娃从静止开始以加速度a=1.25m/s2匀加速助跑,速度达到v=9.0m/s时撑杆起跳,到达最高点时过杆的速度不计,过杆后做自由落体运动,重心下降h=4.05m时身体接触软垫,从接触软垫到速度减为零的时间t=0.90s。已知伊辛巴耶娃的质量m=65kg,重力加速度g取10 m/s2,不计空气的阻力。求:伊辛巴耶娃起跳前的助跑距离;假设伊辛巴耶娃从接触软垫到速度减为零的过程中做匀减速运动,求软垫对她的作用力大小。
如图所示,两平行金属板A、B长8cm,两板间距离d=8cm,A板比B板电势高300V,一带正电的粒子电荷量q=10-10C,质量m=10-20kg,沿电场中心线RO垂直电场线飞入电场,初速度υ0=2×106m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域后,进入固定在O点的点电荷Q形成的电场区域,(设界面PS右边点电荷的电场分布不受界面的影响),已知两界面MN、PS相距为12cm,D是中心线RO与界面PS的交点,O点在中心线上,距离界面PS为9cm,粒子穿过界面PS最后垂直打在放置于中心线上的荧光屏bc上。(静电力常数k = 9.0×109N·m2/C2)(粒子重力忽略不计)求粒子穿过界面MN时偏离中心线RO的距离多远?到达PS界面时离D点多远?确定点电荷Q的电性并求其电荷量的大小。
如图所示,真空中有以(r,0)为圆心,半径为 r 的圆形匀强磁场区域,磁场的磁感应强度大小为 B ,方向垂直于纸面向里,在 y =" r" 的虚线上方足够大的范围内,有水平向左的匀强电场,电场强度的大小为 E ,现在有一质子从 O 点沿与 x 轴正方向斜向下成 30o方向(如图中所示)射入磁场,经过一段时间后由M点(图中没有标出)穿过y轴。已知质子在磁场中做匀速圆周运动的半径为 r ,质子的电荷量为 e ,质量为 m ,不计重力 、阻力。求: 质子运动的初速度大小M点的坐标质子由O点运动到M点所用时间
一宇航员抵达一半径为R的星球表面后,为了测定该星球的质量,做了如下的实验:取一细线穿过光滑的细直管,细线一端拴一质量为m的砝码,另一端连接在一固定的测力计上,手握细直管抡动砝码,使砝码在同一竖直平面内作完整的圆周运动,停止抡动并稳定细直管后,砝码仍可继续在一竖直面内作完整的圆周运动,如图所示.此时观察测力计得到当砝码运动到圆周的最低点和最高点两位置时测力计的读数差为⊿F,已知引力常量为G.试根据题中所给条件和测量结果,求:(忽略弹簧的伸长变化)该星球表面的重力加速度g。该星球的质量M。