如图所示,长为L、内壁光滑的直管与水平地面成30°角固定放置。将一质量为m的小球固定在管底,用一轻质光滑细线将小球与质量为M=km的小物块相连,小物块悬挂于管口。现将小球释放,一段时间后,小物块落地静止不动,小球继续向上运动,通过管口的转向装置后做平抛运动,小球在转向过程中速率不变。(重力加速度为g)
(1)求小物块下落过程中的加速度大小;
(2)求小球从管口抛出时的速度大小;
(3)试证明小球平抛运动的水平位移总小于
从高H处以水平速度v1平抛一个小球1,同时从地面以速度v2竖直向上抛出一个小球2,两小球在空中相遇,则( )
A.从抛出到相遇所用时间为 |
B.从抛出到相遇所用时间为 |
C.抛出时两球的水平距离是 |
D.相遇时小球2上升高度是 |
如图是利用传送带装运煤块的示意图。其中,传送带的从动轮与主动轮圆心之间的距离为s=3m,传送带与水平方向间的夹角θ=37°,煤块与传送带间的动摩擦因数μ=0.8,传送带的主动轮和从动轮半径相等,主动轮轴顶端与运煤车底板间的竖直高度H =" 1.8" m ,与运煤车车箱中心的水平距离x = 0.6m。现在传送带底端由静止释放一煤块(可视为质点)。煤块恰好在轮的最高点水平抛出并落在车箱中心,取g =" 10" m/s2,sin37°="0.6," cos37°= 0.8,求:
(l)主动轮的半径;
(2)传送带匀速运动的速度;
(3)煤块在传送带上直线部分运动的时间。
如图所示,在同一竖直线上不同高度处同时平抛A.b两小球,两者的运动轨迹相交与P点,ab两小球平抛的初速度分别为、,A.b两小球运动到P点的时间分别为,不计空气阻力,下列说法正确的是( )
A. B. C. D.
如图所示,生产车间有两个相互垂直且等高的水平传送带甲和乙,甲的速度为,小工件离开甲前与甲的速度相同,并平稳地传到乙上,乙的宽度足够大,速度为,则
A.在地面参考系中,工件做类平抛运动 |
B.在乙参考系中,工件在乙上滑动的轨迹是直线 |
C.工件在乙上滑动时,受到乙的摩擦力方向不变 |
D.工件沿垂直于乙的速度减小为0时,工件的速度等于 |
如图所示,将一质量为m的小球从空中O点以速度水平抛出,飞行一段时间后,小球经过P点时动能,不计空气阻力,则小球从O到P
A.下落的高度为 |
B.速度增量为3,方向斜向下 |
C.运动方向改变的角度为arctan |
D.经过的时间为 |
如图甲所示,在高h =0.8m的平台上放置一质量为M =1kg的小木块(视为质点),小木块距平台右边缘d =2m。现给小木块一水平向右的初速度v0,其在平台上运动的v2-x关系如图乙所示。小木块最终从平台边缘滑出落在距平台右侧水平距离s =0.8m的地面上,g取10m/s2,求:
(1)小木块滑出时的速度v;
(2)小木块在水平面滑动的时间t;
(3)小木块在滑动过程中产生的热量Q。
将质量为m的物体在高空中以速率υ水平向右抛出,由于风力作用,经过时间t后,物体下落一段高度,速率仍为υ,方向与初速度相反,如图所示.在这一运动过程中,下列关于风力做功的说法,正确的是
A.风力对物体不做功 |
B.风力对物体做的功(绝对值)为 |
C.风力对物体做的功(绝对值)小于 |
D.由于风力方向未知,不能判断风力做功情况 |
如图所示,放置在竖直平面内的光滑曲杆AB,是按照从高度为h处以初速度v0平抛的运动轨迹制成的,A端为抛出点,B端为落地点.现将一小球套于其上,由静止开始从轨道A端滑下.已知重力加速度为g,当小球到达轨道B端时
A.小球的速率为 | |
B.小球在水平方向的速度大小为v0 | |
C.小球的速率为 |
D.小球在水平方向的速度大小为 |
如图所示,在水平地面上M点的正上方某一高度处,将S1球以初速度v1水平向右抛出,同时在M点右方地面上N点处,将S2球以初速度v2斜向左上方抛出,两球恰在M、N连线的中点正上方相遇,不计空气阻力,则两球从抛出到相遇的过程
A.初速度大小关系为v1=v2 |
B.水平速度大小相等 |
C.速度变化量相等 |
D.都做匀变速曲线运动 |
如图所示,斜面ABC 放在水平面上,斜边BC 长为l,倾角为θ=30°,在斜面的上端B沿水平方向抛出一小球,结果小球刚好落在斜面下端C,重力加速度为g,则小球的初速度v0的值为( )
如图所示,在某一峡谷的两侧存在与水平面成相同角度的山坡,某人站在左侧山坡上的P点向对面的山坡上水平抛出三个质量不等的石块,分别落在A、B、C三处,不计空气阻力,A、C两处在同一水平面上,则下列说法正确的是( )
A.落到A、B、C三处的石块落地速度方向相同
B.落到A、B两处的石块落地速度方向相同
C.落到B、C两处的石块落地速度大小可能相同
D.落到C处的石块在空中运动的时间最长
如图所示,质量为m=0.2kg的小球(可视为质点)从水平桌面右端点A以初速度v0水平抛出,桌面右侧有一竖直放置的光滑轨道MNP,其为半径R=0.8m的圆环剪去了左上角135°的圆弧,MN为其竖直直径.P点到桌面的竖直距离为R.小球飞离桌面后恰由P点无碰撞地落入圆轨道,取g=10 m/s2.
(1)求小球在A点的初速度v0及AP间的水平距离x;
(2)求小球到达圆轨道最低点N时对N点的压力;
(3)判断小球能否到达圆轨道最高点M.
如图所示,x轴沿水平方向,y轴沿竖直方向,OM是与x轴成θ角的一条射线.现从坐标原点O以速度v0水平抛出一个小球,小球与射线OM交于P点,此时小球的速度v与OM的夹角为α;若保持方向不变而将小球初速度增大为2v0,小球与射线OM交于P′,此时小球的速度v′与OM的夹角为α′,则( )
A.夹角α′是α的2倍 |
B.小球通过P′点的速率是4v |
C.小球从O运动到P′的时间是从O到P时间的2倍 |
D.OP′=2OP |
如图是利用传送带装运煤块的示意图.其中传送带足够长,倾角θ=37°,煤块与传送 带间的动摩擦因数μ=0.8,传送带的主动轮和从动轮半径相等,主动轮轴顶端与运煤车底板间的竖直高度H=1.8 m,与运煤车车厢中心的水平距离x=1.2 m.现在传送带底端由静止释放一些煤块(可视为质点),煤块在传送带的作用下先做匀加速直线运动,后与传送带一起做匀速运动,到达主动轮时随轮一起匀速转动.要使煤块在轮的最高点水平抛出并落在车厢中心,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,求:
(1)传送带匀速运动的速度v及主动轮和从动轮的半径R;
(2)煤块在传送带上由静止开始加速至与传送带速度相同所经过的时间t.