高中数学

设函数
(1)若关于x的不等式有实数解,求实数m的取值范围;
(2)设,若关于x的方程至少有一个解,求p的最小值.
(3)证明不等式:    

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

方程的解集是                                    

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

 ,若,则      

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)(注意:在试题卷上作答无效)
已知函数
(1)求函数的极值;
(2)若对任意的,都有,求实数a的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)当时,求的单调区间;
(2)若不等式有解,求实数m的取值菹围;
(3)证明:当a=0时,

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数在区间(1,2)内有零点,则实数a的取值范围是(   )

A. B. C. D.
来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

上是减函数,则的取值范围是(   )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)将一张2×6米的硬钢板按图纸的要求进行操作:沿线裁去阴影部分,把剩余的部分按要求焊接成一个有盖的长方体水箱(⑦为底,①②③④为侧面,⑤+⑥为水箱盖,其中①与③、②与④分别是全等的矩形,且⑤+⑥=⑦),设水箱的高为x米,容积为y立方米。
(1)写出y关于x的函数关系式;
(2)如何设计x的大小,使得水箱的容积最大?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的定义域为,对定义域内的任意x,满足,当时,(a为常),且是函数的一个极值点,
(1)求实数a的值;
(2)如果当时,不等式恒成立,求实数m的最大值;
(3)求证:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的图象如图所示,它与直线在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为,则的值为       

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数 f ( x ) = x ( ln x - a x ) 有两个极值点,则实数 a 的取值范围是(  )

A. - , 0 B. 0 , 1 2 C. 0 , 1 D. 0 , +
来源:2013年普通高等学校招生全国统一考试文科数学
  • 更新:2023-11-15
  • 题型:未知
  • 难度:未知

已知函数是定义在R上的奇函数,若对于任意给定的不等实数,不等式
恒成立,则不等式的解集为(    )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

对于函数,若在定义域存在实数,满足,则称为“局部奇函数”.
(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(2)设是定义在上的“局部奇函数”,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售。这批干果销售结束后,店主从销售统计中发出:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第天的总销量(千克)与的关系为;乙级干果从开始销售至销售的第天的总销量(千克)与的关系为,且乙级干果的前三天的销售量的情况见下表:

(1)求的值;
(2)若甲级干果与乙级干果分别以8元/千克的6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?
(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?
(说明:毛利润=销售总金额-进货总金额。这批干果进货至卖完的过程中的损耗忽略不计)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

过曲线外的点作曲线的切线恰有两条,
(1)求满足的等量关系;
(2)若存在,使成立,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学三面角、直三面角的基本性质试题