高中数学

下列说法:
① 设有一批产品,其次品率为0.05,则从中任取200件,必有10件次品;
②抛100次硬币的试验,有51次出现正面.因此出现正面的概率是0.51;
③抛掷骰子100次,得点数是1的结果是18次,则出现1点的频率是
④抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大
⑤有10个阄,其中一个代表奖品,10个人按顺序依次抓阄来决定奖品的归属,则摸奖的顺序对中奖率没有影响。
其中正确的有_____________。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知椭圆的焦点为,在长轴上任取一点M,过M作垂直于的直线交椭圆于P,则使得的M点的概率为(  )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

口袋内装有100个大小相同的红球、白球和黑球,其中有45个红球;从中摸出1个球,若摸出白球的概率为0.23,则摸出黑球的概率为____________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

,则的值为(    )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

若X~B(n,p),且E(X)=6,V(X)=3,则P(X=1)的值为________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某电视台有A、B两种智力闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.
(I )求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;
(II) 记游戏A、B被闯关成功的总人数为,求的分布列和期望.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

甲、乙、丙三人在同一办公室工作,办公室只有一部电话机,给该机打进的电话是打给甲、乙、丙的概率分别是,在一段时间内该电话机共打进三个电话,且各个电话之间相互独立,则这三个电话中恰有两个是打给乙的概率是                (用分数作答)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在三次独立重复试验中,事件A在每次试验中发生的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为(   )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在15个村庄中,有7个村庄交通不太方便,现从中任意选10个村庄,用X表示10个村庄中交通不太方便的村庄数,下列概率中等于的是(    )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

小王通过英语听力测试的概率是,他连续测试3次,那么其中恰有1次获得通过的概率是(  )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.


 

6
9
3 6 7 9 9
9 5 1 0
8
0 1 5 6
9 9 4 4 2
7
3 4 5 8 8 8
8 8 5 1 1 0
6
0 7 7
4 3 3 2
5
2 5

 
(1)在乙班样本中的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.

 
甲班(A方式)
乙班(B方式)
总计
成绩优秀
 
 
 
成绩不优秀
 
 
 
总计
 
 
 

 
附:,其中n=a+b+c+d.)

 P(K2≥k)
0.25
0.15
0.10
0.05
0.025
0.01
0.005
0.001
   k
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828

 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在等差数列{an}中,a4=2,a7=-4.现从{an}的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为________(用数字作答).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

甲、乙两人各射击1次,击中目标的概率分别是,假设两人射击目标是否击中相互之间没有影响,每人各次射击是否击中目标也没有影响.则两人各射击4次,甲恰好有2次击中目标且乙恰好有3次击中目标的概率为________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

两人射击命中目标的概率分别为现两人同时射击目标,则目标能被命中的概率为。(用数字作答)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

有一批种子,每一粒发芽的概率为,播下粒种子,恰有粒发芽的概率为 (     )

A. B.
C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学正交试验设计方法试题