某电视台有A、B两种智力闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(I )求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;(II) 记游戏A、B被闯关成功的总人数为,求的分布列和期望.
如图,在路边安装路灯,灯柱与地面垂直,灯杆与灯柱所在平面与道路垂直,且,路灯采用锥形灯罩,射出的光线如图阴影部分所示,已知,路宽,设灯柱高,.(1)求灯柱的高(用表示);(2)若灯杆与灯柱所用材料相同,记所用材料长度和为,求关于的函数表达式,并求出的最小值.
某中学号召本校学生在本学期参加市创办卫生城的相关活动,学校团委对该校学生是否关心创卫活动用简单抽样方法调查了位学生(关心与不关心的各一半),结果用二维等高条形图表示,如图.(1)完成列联表,并判断能否有℅的把握认为是否关心创卫活动与性别有关?
(参考数据与公式:;
(2)已知校团委有青年志愿者100名,他们已参加活动的情况记录如下:
(i)从志愿者中任选两名学生,求他们参加活动次数恰好相等的概率;(ii)从志愿者中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.
已知函数,(1)若函数满足,且在定义域内恒成立,求实数的取值范围;(2)若函数在定义域上是单调函数,求实数的取值范围;
已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于、两点,且、、三点不重合.(1)求椭圆的方程;(2)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
已知四棱锥的底面是菱形.,为的中点.(1)求证:∥平面;(2)求证:平面平面.