高中数学

是两条不同的直线,是两个不重合的平面,给定下列四个命题:
①若,则
②若,则
③若,则
④若,则.
其中真命题的序号为       

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图是棱长为的正方体的平面展开图,则在原正方体中,

平面;   
平面
③CN与BM成角;
④DM与BN垂直.
以上四个命题中,正确命题的序号是____  ____。 (写出所有正确命题的序号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

类比此性质,如下图,在四面体P-ABC中,若PA、PB、PC两两垂直,底面ABC上的高为h,则得到的正确结论为________________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,正方体的棱长为1,线段上有两个动点,且,则下列结论中正确的有          .(填写你认为正确的序号)



③若上的一动点,则三棱锥的体积为定值;
④在空间与直线都相交的直线只有1条。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

[2012·辽宁高考]已知正三棱锥P-ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

三棱锥中,是该三棱锥外部(不含表面)的一点,给出下列四个命题,
① 存在无数个点,使
② 存在唯一点,使四面体为正三棱锥;
③ 存在无数个点,使
④ 存在唯一点,使四面体有三个面为直角三角形.
其中正确命题的序号是       .

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面四个结论:

①直线BE与直线CF异面;
②直线BE与直线AF异面;
③直线EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正确的有__________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,棱长为1的正方体中,为线段上的动点,则下列结论正确的序号是              

            
②平面平面 
的最大值为  
的最小值为

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,,平面平面中点,点分别为线段上的动点(不含端点),且,则三棱锥体积的最大值为________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中正确的是          .

①BM|是定值         
②点M在某个球面上运动
③存在某个位置,使DE⊥A1 C   
④存在某个位置,使MB//平面A1DE

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,所在的平面,是圆的直径,是圆上的一点,分别是点上的射影,给出下列结论:

;②;③;④
其中正确命题的序号是      

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知空间直角坐标系o﹣xyz中的点A的坐标为(1,1,1),平面α过点A且与直线OA垂直,动点P(x,y,z)是平面α内的任一点,则点P的坐标满足的条件是      

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设l,m是不同的直线,α,β,γ是不同的平面,则下列命题正确的是______________.
①若l⊥m,m⊥α,则l⊥α或 l∥α         
②若l⊥γ,α⊥γ,则l∥α或 lα
③若l∥α,m∥α,则l∥m或 l与m相交    
④若l∥α,α⊥β,则l⊥β或lβ

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点,设异面直线EM与AF所成的角为,则的最大值为      

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

是异面直线,下面四个命题:
①过至少有一个平面平行于
②过至少有一个平面垂直于
③至多有一条直线与都垂直;
④至少有一个平面与都平行.
其中正确命题的个数是          

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用填空题