一个正方体纸盒展开后如图所示,在原正方体纸盒中有下列结论:①AB⊥EF;②AB与CM成60°角;③EF与MN是异面直线;④MN∥CD,其中正确的是( )
A.①② | B.③④ | C.②③ | D.①③ |
已知直线a和两个平面α,β,给出下列四个命题:①若a∥α,则α内的任何直线都与a平行;②若a⊥α,则α内的任何直线都与a垂直;③若α∥β,则β内的任何直线都与α平行;④若α⊥β,则β内的任何直线都与α垂直.则其中( )
A.②、③为真 | B.①、②为真 |
C.①、③为真 | D.③、④为真 |
设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是( )
A.若m∥α,n∥α,则m∥n |
B.若m∥α,m∥β,则α∥β |
C.若m∥n,m⊥α,则n⊥α |
D.若m∥α,α⊥β,则m⊥β |
已知两条不重合的直线m、n和两个不重合的平面、,有下列命题:
①若m⊥n,m⊥,则n∥;
②若m⊥,n⊥,m∥n,则∥;
③若m、n是两条异面直线,m,n,m∥,n∥,则∥;
④若⊥,∩=m,n,n⊥m,则n⊥.其中正确命题的个数是( )
A.1 | B.2 | C.3 | D.4 |
如图所示,在直三棱柱ABC-A1B1C1中, BC="AC" ,AC1⊥A1B,M,N分别是A1B1,AB的中点,给出下列结论:①C1M⊥平面A1ABB1,②A1B⊥NB1 ,③平面AMC1⊥平面CBA1 ,其中正确结论的个数为 ( )
A.0 | B.1 | C.2 | D.3 |
已知两条不重合的直线m、n和两个不重合的平面α、β,有下列命题:
①若m⊥n,m⊥α,则n∥α;
②若m⊥α,n⊥β,m∥n,则α∥β;
③若m、n是两条异面直线,mα,nβ,m∥β,n∥α,则α∥β;
④若α⊥β,α∩β=m,nβ,n⊥m,则n⊥α.其中正确命题的个数是( )
A.1 | B.2 | C.3 | D.4 |
对于不重合的两平面,给定下列条件:
①存在平面,使得都垂直于;
②存在平面,使得都平行于;
③存在直线;
④存在异面直线
其中可以判定平行的条件有( )
A.1个 | B.2个 | C.3个 | D.4个 |
若直线不平行于平面,且,则下列结论成立的是( )
A.内的所有直线与异面 |
B.内不存在与平行的直线 |
C.内存在唯一的直线与平行 |
D.内的直线与都相交 |