某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个,命中个数的茎叶图如图所示,则下列结论错误的一个是( )
A.甲的极差是29 | B.乙罚球比甲更稳定 |
C.甲罚球的命中率比乙高 | D.甲的中位数是24 |
以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②若两个变量的线性相关性越强,则相关系数的绝对值越接近于;
③在某项测量中,测量结果服从正态分布,若位于区域内的概率为,则位于区域内的概率为;
④对分类变量与的随机变量K2的观测值k来说,k越小,判断“与有关系”的把握越大.其中真命题的序号为( )
A.①④ | B.②④ | C.①③ | D.②③ |
已知的取值如下表:
根据上表提供的数据,求出y对x的线性回归方程为,则表中的数据a的值为( )
A.4.6 | B.4.8 | C.5.45 | D.5.55 |
某工厂为了对新研发的一种产品进行合理定价,交该产品按事先拟定的价格进行试销,得到如下数据:
单价(元) |
4 |
5 |
6 |
7 |
8 |
9 |
销量(件) |
90 |
84 |
83 |
80 |
75 |
68 |
由表中数据,求得线性回归方程为,若在这些样本点中任取一点,则它在回归直线左下方的概率为
A. B. C. D.
设有一个直线回归方程为 ,则变量 增加一个单位时 ( )
A.平均增加1.5个单位 | B.平均增加2个单位 |
C.平均减少1.5个单位 | D.平均减少2个单位 |
已知关于与之间的一组数据:
2 |
3 |
3 |
6 |
6 |
|
2 |
6 |
6 |
10 |
11 |
则与的线性回归方程必过点( )
A. B. C. D.
以下命题中:①为假命题,则与均为假命题
②对具有线性相关的变量有一组观测数据,其回归直线方程是,且,则实数
③对于分类变量与它们的随机变量的观测值来说越小.“与有关联”的把握程度越大
④已知,则函数的最小值为16. 其中真命题的个数为 ( )
A.0 | B.1 | C.2 | D.3 |
某小卖部销售一品牌饮料的零售价x(元/评)与销售量y(瓶)的关系统计如下:
零售价x(元/瓶) |
3.0 |
3.2 |
3.4 |
3.6 |
3.8 |
4.0 |
销量y(瓶) |
50 |
44 |
43 |
40 |
35 |
28 |
已知的关系符合线性回归方程,其中.当单价为4.2元时,估计该小卖部销售这种品牌饮料的销量为( )
A.20 B.22 C.24 D.26
某学生四次模拟考试时,其英语作文的减分情况如下表:
考试次数x |
1 |
2 |
3 |
4 |
所减分数y |
4.5 |
4 |
3 |
2.5 |
显然所减分数y与模拟考试次数x之间有较好的线性相关关系,则其线性回归方程为
A.
B.
C.
D.
下列说法中正确的是( )
A.若分类变量和的随机变量的观测值越大,则“与相关”的可信程度越小 |
B.对于自变量和因变量,当取值一定时,的取值具有一定的随机性,,间的这种非确定关系叫做函数关系 |
C.相关系数越接近1,表明两个随机变量线性相关性越弱 |
D.若分类变量与的随机变量的观测值越小,则两个分类变量有关系的把握性越小 |
下表是某厂1~4月份用水量(单位:百吨)的一组数据:
由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是=-0.7x+a,则a等于( )
A.10.5 | B.5.15 | C.5.2 | D.5.25 |
容量为100的样本数据,按从小到大的顺序分为8组,如下表:
第三组的频数和频率分别是 ( )
A.和0.14 | B.和 | C.14和0.14 | D.0.14和14 |