已知变量与正相关,且由观测数据算得样本平均数,,则由该观测数据算得的线性回归方程可能是( )
A. | B. |
C. | D. |
若样本+2,+2, ,+2的平均数为10,方差为3,则样本2+3,2+3,… ,2+3,
的平均数、方差、标准差是( )
A.19,12, | B.23,12, | C.23,18, | D.19,18, |
某产品的广告费用x与销售额y的统计数据如下表:根据上表可得回归方程=x+a中的b=10.6,据此模型预报广告费用为10万元时销售额为( )
广告费用x(万元) |
4 |
2 |
3 |
5 |
销售额y(万元) |
49 |
26 |
39 |
58 |
A.112.1万元 B.113.1万元 C.111.9万元 D.113.9万元
根据如图样本数据得到的回归方程为=bx+a,若样本点的中心为.则当x每增加1个单位时,y就( )
A.增加1.4个单位 | B.减少1.4个单位 |
C.增加7.9个单位 | D.减少7.9个单位 |
下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;
③线性回归直线方程必过;
④在一个2×2列联表中,由计算得K2=13.079,则有99%的把握确认这两个变量间有关系;
其中错误的个数是( )
A.0 | B.1 | C.2 | D.3 |
某产品在某零售摊位上的零售价x(元)与每天的销售量y(个)统计如下表:据上表可得回归直线方程=b+a中的b=-4,据此模型预计零售价定为15元时,销售量为 ( )
A.48 | B.49 | C.50 | D.51 |
对具有线性相关关系的变量,测得一组数据如下表:
x |
2 |
4 |
5 |
6 |
8 |
y |
20 |
40 |
60 |
80 |
100 |
根据上表,利用最小二乘法得到它们的回归直线方程为.据此模型预测时,的估计值为( )
A. 320 B. 320.5 C. 322.5 D. 321.5
以下有关线性回归分析的说法不正确的是
A.通过最小二乘法得到的线性回归直线经过样本的中心 |
B.用最小二乘法求回归直线方程,是寻求使最小的a,b的值 |
C.相关系数r越小,表明两个变量相关性越弱 |
D.越接近1,表明回归的效果越好 |
甲、乙、丙、丁四位同学各自对A、B两变量的线性相关性做实验,并用回归分析方法分别求得相关系数r与残差平方和m如下表:
|
甲 |
乙 |
丙 |
丁 |
R |
0.82 |
0.78 |
0.69 |
0.85 |
M |
106 |
115 |
124 |
103 |
则哪位同学的实验结果体现A、B两变量有更强的线性相关关系.
A.甲 B.乙 C.丙 D.丁
某产品的广告费用x与销售额y的统计数据如表:
广告费用x(万元) |
4 |
2 |
3 |
5 |
销售额y(万元) |
49 |
26 |
39 |
54 |
根据上表可得回归方程,其中=9.4,据此模型预报广告费用为6万元时,销售额为 ( ).
A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元
某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是 ( )
A.=-10x+200 | B.=10x+200 |
C.=-10x-200 | D.=10x-200 |
下表为某班5位同学身高(单位:cm)与体重(单位kg)的数据,
身高 |
170 |
171 |
166 |
178 |
160 |
体重 |
75 |
80 |
70 |
85 |
65 |
若两个量间的回归直线方程为,则的值为( )
A.-122.2 B.-121.04 C.-91 D.-92.3
变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4)(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2)(13,1),表示变量Y与X之间的线性相关系数,表示变量V与U之间的线性相关系数,则( )
A.<<0 | B.0<< | C.<0< | D.= |
根据如下样本数据
x |
3 |
4 |
5 |
6 |
7 |
8 |
y |
4.0 |
2.5 |
0.5 |
得到的回归方程为,则 ( )
A., B.,
C., D.,