从1、2、3、4、5、6中任取1个数,不大于4的概率是( )
A. | B. | C. | D. |
已知M(a,b)是平面直角坐标系xOy中的点,其中a是从l,2,3三个数中任取的一个数,b是从l,2,3,4四个数中任取的一个数.定义“点M(a,b)在直线x+y=n上”为事件 (2≤n≤7,n为整数),则当的概率最大时,n的所有可能的值为 .
四张小卡片上分别写有数字1、2、3、4.它们除数字外没有任何区别,现将它们放在盒子里搅匀.
(1)随机地从盒子里抽取一张,求抽到数字2的概率;
(2)随机地从盒子里抽取一张.不放回再抽取第二张.请你用画树状图或列表的方法表示所有等可能的结果,并求抽到的数字之和为5的概率.
已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.
(1)求从中随机抽取出一个黑球的概率是多少?
(2)若往口袋中再放入个白球和个黑球,从口袋中随机取出一个白球的概率是,求与之间的函数关系式.
一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3、4、5、x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:
解答下列问题:
(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是____________.
(2)如果摸出的这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表法或画树状图法说明理由;如果x的值不可以取7,请写出一个符合要求的x值.
为了了解初三学生参加体育活动的情况,某校对部分初三学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:
A.1.5小时以上 | B.1—1.5小时 |
C.0.5—1小时 | D.0.5小时以下 |
根据调查结果绘制了两幅不完整的统计图如下:
请你根据以上信息解答下列问题:
(1)本次调查的学生人数为 人,图(2)中选项C的圆心角度数为 度,请补全条形统计图。
(2)选择D选项的人中有2人来自一班,2人来自二班,学校准备从这4人中任选两人参加学校组织的师生趣味运动会,请你用列表法或画树状图的方法,求出所选的两人均来自同一个班的概率.
现有5张正面分别标有数字0,1,2,3,4的不透明卡片,它们除数字不同外其余全部
相同。现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使得关于的一元二次方程有实数根,且关于的分式方程有整数解的概率为 .
小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:
(1)求m的值;
(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.
在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有 个.
袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )
A.摸出的三个球中至少有一个球是黑球 |
B.摸出的三个球中至少有一个球是白球 |
C.摸出的三个球中至少有两个球是黑球 |
D.摸出的三个球中至少有两个球是白球 |
把一副扑克牌中的三张黑桃牌(它们正面的数字分别为3,4,5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当两张牌的牌面数字相同时,小王赢;当两张牌的牌面数字不同时,小李赢.
(1)请利用画树状图或列表的方法表示出所有可能出现的结果;
(2)分析游戏规则对双方是否公平,并说明理由.
在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现从中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是_________________个.