笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上 的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是
A. B. C. D.
密码锁有三个转轮,每个转轮上有十个数字:0,1,2, .小黄同学是9月份中旬出生,用生日“月份 日期”设置密码:
小张同学要破解其密码:
(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是 .
(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;
(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.
已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入 颗白棋子和 颗黑棋子,从盒子中随机取出一颗白棋子的概率为 ,则 与 之间的关系式是 .
某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是
A. |
|
B. |
|
C. |
|
D. |
|
在一个不透明的袋子中装有 个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为 ,那么 的值是
A. |
6 |
B. |
7 |
C. |
8 |
D. |
9 |
某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.
(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;
(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率 .
(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:
应聘者 |
专业知识 |
讲课 |
答辩 |
甲 |
70 |
85 |
80 |
乙 |
90 |
85 |
75 |
丙 |
80 |
90 |
85 |
按照招聘简章要求,对专业知识、讲课、答辩三项赋权 .请计算三名应聘者的平均成绩,从成绩看,应该录取谁?
(2)我市举行了某学科实验操作考试,有 、 、 、 四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.
①小厉参加实验 考试的概率是 ;
②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.
某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是 .
在不透明的盒子中装有5个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是 ,则白色棋子的个数是 .
有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是 .
为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为 , , , 四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图,根据统计图中提供的信息,结论错误的是
A.本次抽样测试的学生人数是40
B.在图1中, 的度数是
C.该校九年级有学生500名,估计 级的人数为80
D.从被测学生中随机抽取一位,则这位学生的成绩是 级的概率为0.2
若 是一个两位正整数,且 的个位数字大于十位数字,则称 为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.
(1)写出所有个位数字是5的“两位递增数”;
(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.
如果任意选择一对有序整数 ,其中 , ,每一对这样的有序整数被选择的可能性是相等的,那么关于 的方程 有两个相等实数根的概率是 .