【观察思考】
【规律发现】
请用含 n 的式子填空:
(1)第 n 个图案中“◎”的个数为_____;
(2)第1个图案中“★”的个数可表示为 1 × 2 2 ,第 2 个图案中“★”的个数可表示为 2 × 3 2 ,第 3 个图案中“★”的个数可表示为 3 × 4 2 ,第 4 个图案中“★”的个数可表示为 4 × 5 2 ,……,第 n 个图案中“★”的个数可表示为_____.
【规律应用】
(3)结合图案中“★”的排列方式及上述规律,求正整数 n ,使得连续的正整数之和 1+2+3+……+n 等于第 n 个图案中“◎”的个数的 2 倍.
如图,E、F分别是正方形ABCD中BC和CD边上的点,CE=BC,F为CD的中点,连接AF、AE、EF, (1)判定△AEF的形状,并说明理由; (2)设AE的中点为O,判定∠BOF和∠BAF的数量关系,并证明你的结论.
如图,在直角坐标系中,A(0,4),C(3,0). (1)以AC为边,在其上方作一个四边形,使它的面积为; (2)画出线段AC关于y轴对称线段AB,并计算点B到AC的距离.
如图,在平行四边形ABCD中,AC,BD相交于点O,点E,F在AC上,且OE=OF. (1)求证BE=DF; (2)线段OE满足什么条件时,四边形BEDF为矩形(不必证明).
如下图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=25°,求∠COE、∠AOE、∠AOG的度数。
如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,试判断∠AGF与∠ABC的大小关系,并说明理由.