已知函数 f x = 1 x + a ln 1 + x .
(1)当 a=-1 时,求曲线 y=f x 在点 1 , f 1 处的切线方程;
(2)若函数 f x 在 0 , + ∞ 单调递增,求 a 的取值范围.
如图,四棱锥中,⊥底面,底面为梯形,,,且,点是棱上的动点. (Ⅰ)当∥平面时,确定点在棱上的位置; (Ⅱ)在(Ⅰ)的条件下,求二面角的余弦值.
在中,分别为角所对的边,且, (Ⅰ)求角; (Ⅱ)若,,的周长为,求函数的取值范围
设是平面上的两个向量,若向量与互相垂直. (Ⅰ)求实数的值; (Ⅱ)若,且,求的值.
已知数列的前项和为. (Ⅰ)求数列的通项公式; (Ⅱ)记,求数列的前项和
如图,两矩形ABCD,ABEF所在平面互相垂直,DE与平面ABCD及平面ABEF所成角分别为,M、N分别为DE与DB的中点,且MN=1. (1) 求证:MN丄平面ABCD (2) 求线段AB的长; (3) 求二面角A—DE—B的平面角的正弦值.