已知函数 f x = 1 x + a ln 1 + x .
(1)当 a=-1 时,求曲线 y=f x 在点 1 , f 1 处的切线方程;
(2)若函数 f x 在 0 , + ∞ 单调递增,求 a 的取值范围.
已知函数是定义在上的奇函数,且,若,,则有. (1)判断的单调性,并加以证明; (2)解不等式; (3)若对所有,恒成立,求实数的取值范围.
二次函数满足且. (1)求的解析式; (2)在区间上,的图象恒在的图象上方,试确定实数m的范围.
已知集合 (1)当=3时,求;(2)若,求实数的值.
设上的两点,已知向量,,若且椭圆的离心率短轴长为2,为 坐标原点. (Ⅰ)求椭圆的方程; (Ⅱ)若直线过椭圆的焦点(0,c),(c为半焦距),求直线的斜率的值; (Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
已知椭圆的一条准线方程是,其左、右顶点分别是A、B;双曲线的一条渐近线方程为. (1)求椭圆的方程及双曲线的离心率; (2)在第二象限内取双曲线上一点P,连结BP交椭圆于点M,连结PA并延长交椭圆于点N,若.求证:.