如图,两矩形ABCD,ABEF所在平面互相垂直,DE与平面ABCD及平面ABEF所成角分别为,M、N分别为DE与DB的中点,且MN=1.(1) 求证:MN丄平面ABCD(2) 求线段AB的长;(3) 求二面角A—DE—B的平面角的正弦值.
(1)点在以原点为顶点,坐标轴为对称轴的抛物线上,求抛物线方程; (2)已知双曲线经过点,它渐近线方程为,求双曲线的标准方程。
在椭圆中,为椭圆上的一点,过坐标原点的直线交椭圆于两点,其中在第一象限,过作轴的垂线,垂足为,连接, (1)若直线与的斜率均存在,问它们的斜率之积是否为定值,若是,求出这个定值,若不是,说明理由; (2)若为的延长线与椭圆的交点,求证:.
在如图所示的几何体中,四边形为平行四边形,,⊥平面,∥,∥,∥. (1)若是线段的中点,求证:∥平面; (2)求二面角的余弦值.
已知过抛物线的焦点,斜率为的直线交抛物线于,两点,且. (1)求该抛物线的方程; (2)为坐标原点,是否存在平行于的直线,使得直线与抛物线有公共点,且直线与的距离为?若存在,求出直线的方程;若不存在,说明理由.
如图,在平行六面体中,, ,, (1)求; (2)求证:平面.