如图,已知 D 为 ⊙ O 上一点,点 C 在直径 B A 的延长线上, B E 与 ⊙ O 相切,交 C D 的延长线于点 E ,且 B E = D E .
(1)判断 C D 与 ⊙ O 的位置关系,并说明理由;
(2)若 A C = 4 , sin C = 1 3 ,
①求 ⊙ O 的半径;
②求 B D 的长.
如图,已知A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC。且已知AB=CD。(1)试问DB平分EF能成立吗?请说明理由。(2)若△DEC的边EC沿AC方向移动,其余条件不变,如图,上述结论是否仍成立?请说明理由。
如图,已知:在等边三角形ABC中,D、E分别在AB和AC上,且AD="CE" ,BE和CD相交于点P。(1)说明△ACD≌△CEB(2)求:∠BPD 的度数.
如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB 长2.5米,顶端A在AC 上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?
如图,在△ABC中,∠B=∠C, AD是△ABC的BC边上的高,DE∥AB,交AC于点E,判断△ADE是不是等腰三角形,并说明理由。
我们在七年级(下)中学习了三角形的内角和等于180°,当时,我们是通过拼图的方法得到的。现在你能否利用平行线的性质来得出“三角形的内角和等于180°”?请你添上辅助线并把过程写下来。