某班参加一次智力竞赛,共 a , b , c 三题,每题或者得满分或者得零分,其中题 a 满分 20 分,题 b ,题 c 满分分别为 25 分.竞赛结果,每个学生至少答对了一题,三题全答对的有 1 人,答对其中两道题的有 15 人,答对题 a 的人数与答对题 b 的人数之和为 29 人,答对题 a 的人数与答对题 c 的人数之和为 25 ,答对题 b 的人数与答对题 c 的人数之和为 20 .问这个班的平均成绩是多少分?
(本题共7分)如果一个点与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A、B两点可构成直角三角形ABC,则称点C为A、B两点的勾股点,同样,点D也是A、B两点的勾股点.(1)如图1,矩形ABCD中,AB =2,BC =1,请在边CD上作出A、B两点的勾股点(点C和点D除外).(要求:尺规作图,保留作图痕迹,不要求写作法)(2)如图2,矩形ABCD中,若AB =3,BC =1,点P在边CD上(点C和点D除外),且点P为A、B两点的勾股点,求DP的长.
(本题共6分)2013年,江阴市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)
(本题共6分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.
(本题共6分)如图,每个小方格都是边长为1个单位的小正方形,A.B.C三点都是格点(每个小方格的顶点叫格点),其中A(1,8),B(3,8),C(4,7). (1)若D(2,3),请在网格图中画一个格点△DEF,使△DEF ∽△ABC,且相似比为2∶1; (2)求△ABC中AC边上的高; (3)若△ABC外接圆的圆心为P,则点P的坐标为 .
(本题5分)先化简,再计算:,其中是方程的正数根.