已知x和y是实数,举例说明下列说法是错误的. (1)│x+y│=│x│+│y│;(2)若x≤y,则x2≤y2.
定义:如果一条直线能够将一个封闭图形的周长和面积平分,那么就把这条直线称作这 个封闭图形的等分线。(1)请在如下的三个图形中,分别作一条等分线.圆 平行四边形 等腰三角形(2)请在图中用尺规作图作一条直线,使它即是矩形的等分线,也是圆的等分线.(保留作图痕迹,不写作法)(3)如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,点P是边AB上的动点,问是否存在过点P的等分线?若存在,求出AP的长,若不存在,请说明理由.
如图1,在Rt△ABC中,∠ACB=90°,E是边AC上任意一点(点E与点A,C不重合),以CE为一直角边作Rt△ECD,∠ECD=90°,连接BE,AD.(1)若CA=CB,CE=CD①猜想线段BE,AD之间的数量关系及所在直线的位置关系,直接写出结论;②现将图1中的Rt△ECD绕着点C顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(2)若CA=8,CB=6,CE=3,CD=4,Rt△ECD绕着点C顺时针转锐角α,如图3,连接BD,AE,计算的值.
在平面直角坐标系中,抛物线与轴交于点A(-3,0)B(1,0)两点, D是抛物线顶点,E是对称轴与x轴的交点.(1)求抛物线的解析式;(2)若点F和点D关于轴对称, 点P是x轴上的一个动点,过点P作PQ∥OF交抛物线于点Q,是否存在以点O、F、P、Q为顶点的平行四边形?若存在,求出点P坐标;若不存在,请说明理由.
阅读材料如图1,若点P是⊙O外的一点,线段PO交⊙O于点A,则PA长是点P与⊙O上各点之间的最短距离.图1 图2证明:延长PO 交⊙O于点B,显然PB>PA.如图2,在⊙O上任取一点C(与点A,B不重合),连结PC,OC.∵PO<PC+OC 且PO=PA+OA,OA=OC ∴PA<PC∴PA 长是点P与⊙O上各点之间的最短距离.由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差.请用上述真命题解决下列问题.(1)如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,则AP长的最小值是 . 图3 图4(2)如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接AC,①求线段A′M的长度; ②求线段A′C长的最小值.
如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.(1)求证:DF是⊙O的切线;(2)若DF=3,DE=2.①求值;②求的度数.