如图,已知 AB / / CD ,分别探究下列四个图形(图(1),图(2),图(3),图(4))中 ∠ APC 和 ∠ PAB , ∠ PCD 的数量关系,用等式表示出来,并说明理由.
如图11-1,有一座抛物线型拱桥,涨潮时桥内水面宽AB为8米,落潮时水位下降5米,桥内水面宽CD为12米. (1)建立适当的平面直角坐标系,并求此抛物线的解析式;(2)如图11-2,某种货船在水面上的部分的横截面是梯形EFGH,且HE=FG,EF= HE,∠GHE=45°.试问落潮时,能顺利通过拱桥的这种货船在水面上的部分最大高度是多少?
如图10-1,在△A B B′和△A C C′中,∠B A B′=∠C A C′=m°,AC=AC',AB=AB'.(1)不添加辅助线的前提下,请写出图中满足旋转变换的两个三角形分别是: ;旋转角度是 °;(2)线段BC、B'C'的数量关系是: ;试求出BC、B'C'所在直线的夹角: ;(3)随着△ACC'绕点A的旋转,(2)的结论是否依然成立?请从图10-2、图10-3中任选一个证明你的结论;(4)利用解决上述问题所获得的经验探索下面的问题:如图10-4,等边△ABC外一点D,且∠BDC=60°,连接AD,试探索线段AD、CD、BD的数量关系.
某商店1月份开始营业并盈利1500元,3月份盈利2160元.如果该商店每个月盈利的月增长率相同,求:(1)该商店月平均增长率; (2)该商店第一季度共盈利多少元?
按要求解下列两个方程:(1)(配方法) (2)(公式法)
某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数关系:
(1)求销售量与销售单价的函数关系式; (2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;并求出销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.